
Weston B. Griffin
GE Global Research
Niskayuna, New York
wgriffin@stanfordalumni.org

William R. Provancher
Department of Mechanical
Engineering
University of Utah
Salt Lake City, Utah

Mark R. Cutkosky
Department of Mechanical
Engineering
Stanford University
Stanford, California

Presence, Vol. 14, No. 6, December 2005, 720–731

© 2005 by the Massachusetts Institute of Technology

Feedback Strategies for
Telemanipulation with Shared
Control of Object Handling Forces

Abstract

Shared control represents a middle ground between supervisory control and tradi-
tional bilateral control in which the remote system can exert control over some
aspects of the task while the human operator maintains access to low-level forces
and motions. In the case of dexterous telemanipulation, a natural approach is to
share control of the object handling forces while giving the human operator direct
access to remote tactile and force information at the slave fingertips. We describe a
set of experiments designed to determine whether shared control can improve the
ability of an operator to handle objects delicately and to determine what combina-
tions of force, visual, and audio feedback provide the best level of performance and
operator sense of presence. The results demonstrate the benefits of shared control
and the need to carefully choose the types and methods of direct and indirect
feedback.

1 Introduction

The work described herein is part of a project to enhance the dexterity
and sensitivity of dexterous telemanipulation (i.e., manipulation in which fine
forces and motions are imparted with the fingertips). Shared control provides a
framework for extending the capabilities of an immersive telemanipulation system.

A shared control telemanipulation system combines some of the autonomy
of supervised systems (Sheridan, 1992) with the telepresence found in direct
master-slave bilateral systems (Figure 1). There are advantages to having the
robot hand take over force regulation and object manipulation when the task
is sufficiently well defined. By providing local control of forces, stiffness, and
fine hand motions, the robot allows the human supervisor to focus on the task
itself, concentrating on the desired motions and behavior of the grasped object
or tool. Time delays and limitations in the accuracy of haptic feedback through
the master become less detrimental because commands from the master are
supplemented by local control to prevent unwanted slips or object damage.
However, there is some concern that the operator’s sense of presence will be
reduced as the slave system takes more control over the interaction. Moreover,
there is an indication from the physiology literature (Westling & Johansson,
1984) that without appropriate tactile cues, the human grasp force will gradu-
ally relax, leading to a divergence between conditions at the master and slave.
Shared control seeks to avoid these problems by keeping the operator in direct
contact with tactile and force information sensed at the slave fingertips.
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In the experiment discussed in this paper, the opera-
tor and the robotic hand share control of the grasp
force when handling an object. To prevent accidental
drops, the robot can intervene and assume control over
the internal force. However, the operator maintains the
ability to override the dexterous controller to release the
object, or grasp it tightly, if desired.

Several conditions were tested to investigate some of
the issues associated with shared control, including the
effects of robot task intervention, indirect feedback, and
force feedback. In particular, we wished to determine
whether task performance was improved if the operator
was informed when robot intervention occurred. Addi-
tionally, because control was shared over parameters
used for direct haptic feedback, different methods of
force feedback were tested.

2 Previous Work

In cases where time delay is not a significant prob-
lem, shared control offers advantages over strict supervi-
sory control by providing the operator with direct access
to forces and motions at the slave. Many previous inves-
tigations have implemented a mix of hierarchical and
shared control for telemanipulation.

Initial investigations focused on developing a framework
for task-level sharing of motion trajectories for systems
with moderate time delays (Hayati & Venkataraman,
1989; Oda et al., 1999). Other work focused on modify-

ing the impedance of slave-manipulators based on teleop-
erator commands and local sensor information (Han-
naford, Wood, McAffee, & Zak, 1991; Backes, 1992).

Toward dexterous telemanipulation, Michelman and
Allen (1994) applied the concept of shared control to the
Utah/MIT dexterous hand. Their system focused on de-
fining and sequencing primitives for operations such as
grasping an object and inserting a peg in a hole. Research-
ers at NASA have developed Robonaut, a humanoid ro-
botic system with a dexterous hand and telepresence inter-
face. The control architecture is based on distributed
control nodes that combine low-level intelligence for re-
flexive actions and high level commands for grasp configu-
ration (Diftler, Culbert, Ambrose, Platt, & Buethmann,
2003). While these dexterous systems demonstrate the
application of a shared control framework, none specifically
addresses the issues of haptic feedback at the fingertip level.

Of particular relevance to our experiment, Hannaford et
al. (1991) evaluated a six-axis generalized teleoperation
system with arm/hand force feedback. Along with evalua-
tion of the force feedback, a case was tested in which con-
trol was shared with the robot (utilizing local force/torque
sensing) during a peg-hole insertion task. In this task, the
operator controlled the end-effector position while task-
space orientation control was shared with the robot. The
authors observed a reduction in task completion time and
sum-of-squared forces with the addition of shared control.

3 Experimental Setup

The dexterous telemanipulation system includes
an arm-mounted master, a controller, and a slave con-
sisting of an industrial robot and a two-fingered hand.
Although small time delays must be considered when
tuning the system, the treatment of large delays is be-
yond the scope of this paper. In addition, the operator
has direct visual and aural feedback from the slave, lo-
cated across the room from the master.

3.1 Master System

Human finger motions are recorded by an instru-
mented glove (Immersion CyberGlove) and wrist mo-

Figure 1. Shared control concept for dexterous telemanipulation.
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tions are recorded using a six-DOF ultrasonic tracking
system (Logitech Head Tracker). Calibration software
developed in previous work (Griffin, Findley, Turner &
Cutkosky, 2000) allows the telemanipulation controller
to estimate the intended motions of a virtual object
grasped between the operator’s thumb and index finger.
The glove and tracker signals are sampled at 200 Hz
and 50 Hz, respectively, and smoothed to generate mo-
tion commands for the slave (Turner, Findley, Griffin,
& Cutkosky, 2000; Griffin, 2003).

A cable-driven exoskeleton (Immersion CyberGrasp)
provides a single degree of freedom of force feedback at
each fingertip (Figure 2a). Additional feedback chan-
nels, including audio tones and visible LEDs on the ro-
bot hand, display state information computed by the
telemanipulation controller.

3.2 Slave System

The slave system has a two-fingered hand with
two degrees of freedom per finger. The hand is de-
signed specifically for use with force and tactile sensors
and therefore has a smooth back-driveable cable trans-
mission to minimize friction and vibrations (Figure 2b).
For the experiments in this paper, the fingertips were

equipped with sensors to measure normal and tangential
contact forces and contact locations.1

The robotic hand is mounted to an industrial five-axis
SCARA robotic arm. Special-purpose software allows
real-time control of the robot trajectory at 63 Hz up-
date rates via ethernet.2

3.3 Control Framework

To accommodate the various communication rates
and priorities associated with different system compo-
nents, the controller was developed on a real-time oper-
ating system (QNX) with a multiprocess structure im-
plemented on two networked nodes.

The control laws for the slave manipulator lay the
foundation for implementing a shared control telema-
nipulation system. We are interested in both indepen-
dent control of the fingers (for exploration) and coordi-
nated control for manipulating grasped objects.
Following the approach of Hyde (1995) and Schneider
and Cannon (1989), the dynamics are computed using
Khatib’s (1987) operational space formulation, with
Hogan’s (1985) impedance control to specify the be-
havior with respect to disturbances. The impedance
control loop runs at 1 kHz and the hand has a closed-
loop bandwidth of approximately 10 Hz for small mo-
tions of the grasped object.

The transition between independent and coordinated
manipulation is based on signals from force and tactile
sensors, following the approach of Hyde (1995). For
manipulation of a grasped object, the controller must
first map the operator’s finger motions to the corre-
sponding motions of a virtual object held in the hand.
The controller then computes the motions required of
the (non-anthropomorphic) robot fingers, including
rolling kinematics, to achieve a geometrically similar
motion of the actual object (Griffin et al., 2000; Griffin,
2003).

Figure 3 illustrates the control system diagram for the
cooperative control method. Separate control laws are

1http://bdml.stanford.edu/touch/tele_projects/res_tacsens.htm
2Adept Technologies, Inc. V! 12.4 OS with Enhanced Trajectory

Control and Advanced Servo Library.

Figure 2. (a) Master interface with instrumented glove, force
feedback exoskeleton, and ultrasonic wrist tracker. (b) Slave system
with dexterous robotic hand mounted to industrial robotic arm.
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used for controlling the (external) impedance forces and
the (internal) grasp force on the object. The impedance
forces are generated based on the difference between
the current (modeled) object position and the opera-
tor’s mapped virtual object position. The desired object
positions are equilibrium points for a virtual spring and
damper attached to the object; desired orientations are
equilibrium points for a virtual torsional spring-damper.
The internal force applied to the object is regulated
based on the operator’s desired internal force and on
the actual internal force as measured by force sensors in
the robot hand.

The internal and external forces are concatenated and
multiplied by the forward grasp transform to determine
the appropriate fingertip forces (Mason & Salisbury,
1985). The forward grasp transform is formulated and
updated using finger/object contact geometry and pro-
vides a mathematical construct to determine the neces-
sary fingertip forces required to create a net force on a
grasped object (Mason & Salisbury, 1985). The opera-
tional space formulation is then used to generate appro-
priate torques for each finger link based on the desired
fingertip forces, accounting for the dynamic properties
of the finger mechanisms.

The upper portion of control diagram (Figure 3) il-
lustrates the object-tracking algorithm (partially based
on the approach of Maekawa, Tanie, and Komoriya
[1995]) and is used to track and update the modeled
object location. Using tactile sensors at the fingertips to

detect contact location, the control method sums differ-
ential object motions computed by multiplication of the
velocity grasp transform and fingertip contact point ve-
locities. The velocity grasp transform is derived directly
from the forward grasp transform. The advantage of this
contact tracking method lies in its ability to manipulate
unknown objects, thus removing the need for having an
object model.

Utilizing force and tactile sensors and the kinematics
of contact, the cooperative control algorithm can stably
manipulate an object through arbitrary small transla-
tions and rotations (i.e., until regrasping becomes nec-
essary).

4 Experiment Description

Using the telemanipulation system, operators were
instructed to pick up and carry an object across the
workspace and set it down on a designated target (Fig-
ure 2b). The operators were asked to treat the object as
fragile and thus to use a minimum grasp force, while
taking care not to let the object drop. The object was a
0.2 kg wood block and was moved between targets sep-
arated by 0.7 m.

To assist the operator, the controller must have an
estimate of the minimum grasp force. When grasping
objects with their own hands, humans readily identify
the minimum force required to prevent slipping and

Figure 3. Control diagram for object impedance cooperative control framework.
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generally maintain a safety margin of 10–30% (Westling
& Johansson, 1984). For the robot, we estimate the
minimum internal force based on a priori friction esti-
mates and continuous measurements of the normal and
tangential forces at the robot fingertips. Recall that in a
multifingered grasp, the contact forces can be decom-
posed into fext, which balance the object weight, inertial
forces, and contact with the environment, and fint,
which produce no net resultant and can be adjusted in-
dependently to prevent slipping (Yoshikawa and Nagai,
1991). For a two-fingered grasp on a block that is held
approximately level, the minimum internal force be-
comes:

f int,min ! max!ftan,i

"i
" (1)

where "i is the static friction estimate for the ith finger
and ftan,i is the tangential force component. With this
information, the robot is able to regulate the internal
grasp force, using a PI control law, independent of ex-
ternal forces on the object.

We are interested in evaluating shared control as
compared to unassisted telemanipulation and in deter-
mining what kinds of feedback are most useful to the
operator. Accordingly, we examined various cases in
which one or more of the following conditions applied.

● Direct bilateral control (baseline case). The desired
grasp force from the operator (expressed as a reduc-
tion in the virtual distance between the fingertips,
following the impedance control formulation
[Hogan, 1985]) is used directly to control the
grasp force on the object. The magnitude of the
measured grasp force at each finger is fed directly
back to the operator via CyberGrasp.

● Robot assisted control. When the desired grasp (in-
ternal) force drops below 110% of the minimum
force in Eq. (1), the robot controller intervenes to
maintain it at 110%, until the operator releases the
object (desired grasp force " 0). When robot inter-
vention is active, the force fed back to the user can
be either the magnitude of the actual grasp force
measured at the fingertips or proportional to the
commanded grasp force.

● Visual indicators. When robot intervention is en-
abled, LEDs on the robot hand are illuminated
when the controller is actively maintaining the in-
ternal force at 110% of fint,min.

● High frequency audio tone. A 500 Hz warning is
sounded when the object is in danger of slipping.
For unassisted telemanipulation, the tone is
sounded whenever the desired grasp force ap-
proaches fint,min (at 101% of the minimum grasp
force). If intervention is active, an audio tone is
emitted when the desired grasp force approaches
zero, which would trigger the robot to release the
object.

● Low frequency audio tone. To discourage the user
from squeezing the object too hard, a 50 Hz tone
can be emitted when the desired grasp force ex-
ceeds 170% of the minimum required.

The audio and LED feedback channels create a target
window in which the user can remain for safe, gentle
object handling. The target windows for manipulation
with and without robot intervention are depicted in
Figure 4. Note that the target window with robot inter-
vention (Figure 4b) is wider because the desired grasp

Figure 4. Comparison plots of feedback to operator for cases with
and without intervention.
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force can drop below fint,min without adverse conse-
quences.

The various cases tested, and the combinations of
feedback associated with each case, are listed in Table 1.

5 Procedure

Eleven subjects, eight males and three females,
were recruited for the experiments. Each subject was
required to complete the experiment in two sessions.
The first session was used to calibrate and adjust the
human-to-robot mapping parameters (see Griffin et al.,
2000) and familiarize the operator with controlling the
robotic arm and hand with visual and force feedback,
and required approximately one hour to complete.

The second session occurred two to four days after
the first. The subjects were refamiliarized with the sys-
tem and initially instructed to perform the pick-carry-
and-place task under the control case, Case 1. Prior to
testing, each case was explained using a graphic similar
to Figure 4.

Subjects were asked to transport the block from tar-
get to target using the minimum force necessary with-
out dropping it. The task was marked a failure if the
block was dropped or not placed on the target. Subjects
were told that trial completion time was not considered
in evaluating performance.

Each subject was asked to complete four trials for each
of the seven different cases. The case order for each subject
was randomized. At the start of each new case, subjects
were given a single practice trial prior to the four test trials.

During the test trials, the following data were re-
corded at 200 Hz by the computer: time, the measured
internal force on the object, the operator’s commanded
internal force, the calculated minimum internal force
per Eq. (1), the intervention state, and the states of any
audio alarms and LED indicators. The experimenters
manually recorded failures. On average, subjects took
one and a half hours to complete the test trials in the
second session.

6 Results

The results of the tests were examined to deter-
mine which combinations of control and which forms of
feedback improved task performance in terms of mini-
mizing the internal force and reducing failures.

Plotting key variables for each case immediately reveals
some trends. Figure 5 shows typical trials of one subject
for Cases 1, 2, and 6. For every case, the measured internal
force closely tracks the operator’s desired (commanded)
internal force, unless intervention is active. For Case 1 (di-
rect telemanipulation), the calculated minimum internal
force is also shown. This force is approximately 1.7 N, with
minor variations due to vertical accelerations of the block.
Most of the time, the operator’s commanded force is con-
siderably above the minimum.

For Case 2 (alarms only), the effects of adding the
audio tones are seen. Initially, the operator utilizes an
excessive grasp force, which is gradually relaxed until
the low frequency tone is no longer heard. The operator
then uses the high frequency tone to maintain the grasp
force above the minimum requirement (high frequency
tone triggered at 101% of fint,min).

Table 1. Tested Effects for Experimental Cases

Case

Aid

Audio
alarms

Robot
intervention

LED
indicator

Reduced
force
feedback

Case 1 No No No No
Case 2 Yes No No No
Case 3 No Yes No No
Case 4 Yes Yes Yes No
Case 5 No Yes No Yes
Case 6 Yes Yes Yes Yes
Case 7 No Yes Yes Yes

Note: Audio alarms are sounded when subject force is too
low or too high. Robot intervention occurs when the
force commanded by the subject is too low. The LED
indicator lights up during cases of robot intervention.
Reduced force feedback occurs during robot intervention
when the force commanded by the subject is too low.

Griffin et al. 725



For Case 6 (robot intervention with alarms and LEDs) a
trace is plotted corresponding to the 110% threshold at
which the robot assumes control of the grasp force. Not
surprisingly, the measured internal force tracks this value
closely. As in Case 2, the operator initially applies an exces-
sive force (marker A) and then reduces the force, allowing
the robot to assume internal force control (B). However,
the operator slowly continues to relax (consistent with pre-
dictions from Westling and Johansson [1984]) until the
high frequency tone alarm sounds (C) to warn that the
object may be released. The operator adjusts the grasp
force and lets the robot continue to intervene (D) until the
object is released at the target (E).

6.1 Objective Data Analysis

The objective data analysis is based primarily on
the measured internal force applied to the object. Since
the goal is to handle the object gently, the measured
internal force is a logical performance metric. The mean

and standard deviation of the force for each case over all
subjects is given in Table 2.

Figure 6 shows a boxplot of the average measured
internal force for each case based on an average of suc-
cessful trials for each subject. There is clearly a reduc-
tion in the measured internal force when comparing all
cases to the control case (Case 1). In particular, Cases 4,
6, and 7 have a distribution that is much lower than
Case 1. It should be pointed out that in theory it is pos-
sible to complete the task under Cases 1 and 2 with a
lower force than cases with intervention because, during
intervention, the lowest force the robot can apply is
110% of the minimum. To determine whether differ-
ences among the cases are statistically significant, an
analysis of variance (ANOVA) was performed. A single
factor, balanced ANOVA test with seven fixed effects
was first run on the average measured internal force of
each subject and for each case (yielding 11 data points
per case with 76 DOF). The null hypothesis was that
the different cases had no effect on the measured inter-

Figure 5. Typical subject data recorded during a single task trial for Cases 1, 2, and 6.
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nal force. The ANOVA test results in a p value of .003
[F(6,70) # 3.71]. Thus we can conclude that at least
two cases have a statistically different mean.

To determine specifically which cases are different, we
must apply a multi-comparison procedure. For this we
apply Dunnett’s method, which is designed for the
comparison of several effects to a control effect (Case 1)
while limiting the possibility of a Type I error to the
desired significance level (# # 0.05) (Devore & Far-
num, 1999). Applying this method, we can state with
95% confidence that Cases 4, 6, and 7 have a mean dif-
ferent than Case 1. From the averages in Table 2, we
see a reduction of internal force on the order of 15% for
these cases.

Even though subjects were informed that task com-
pletion time was not a factor, the task time may reveal
information about the mental or physical difficulty asso-
ciated with completing the task under the various con-
ditions. An ANOVA test was performed using the 11

subjects’ averaged trial times (excluding failures) for
each case. The analysis resulted in a p value of .82
[F(6,70) # 0.48], indicating that the mean task com-
pletion times for the cases are not statistically different.
While there is no improvement in task time for cases
with shared control, there is importantly no increase in
task time either.

Figure 7 shows the total number of failures for each
case. With eleven subjects and four trials per case, each
case was attempted 44 times. The numbers of failures
for Cases 5 and 6 are the lowest and, interestingly, Case
7, which is identical to Case 5 except for the addition of
LEDs, had the highest number of failures. Also note
that no single subject contributed a disproportionate
number of failures.

6.2 Discussion of Objective
Analysis Results

Taking into account the task goals and the objec-
tive performance criteria based on measured internal
force, task completion time, and number of failures, it is
clear that the addition of a dexterous shared controller
to a traditional bilateral telemanipulation system can
enhance an operator’s performance during a typical tele-
manipulation task.

A comparison of the measured internal force for Case
1 versus Case 2 indicates that warning the operator of a
possible failure through audio feedback may be helpful.
However, during preliminary testing we found that
alarms could cause significant confusion for the operator
if the activation levels were set too close relative to each
other. Part of the advantage of adding robot interven-
tion is that it allows us to make the target window
wider, separating the conditions associated with the
high and low audio tones.

Table 2. Mean and Standard Deviation of Measured Internal Force of All Subjects for Each Case

Case 1 2 3 4 5 6 7

Average Force (N) 2.3 2.2 2.3 1.9 2.2 1.9 2.0
SD of Force (N) 0.3 0.3 0.4 0.2 0.4 0.1 0.2

Figure 6. Boxplot showing medians, quartiles, and outliers of
subjects’ averaged measured internal force applied to the object.
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As anticipated, we found that robot intervention
could improve task performance. However, the presence
and type of direct and indirect feedback had a marked
effect. The cases in which we informed the operator that
the intervention was occurring (Cases 4, 6, and 7) had
lower forces than the control (Case 1), whereas in Cases
3 and 5 (no indication of intervention), the average in-
ternal force was similar to Case 1. Moreover, if we ex-
amine the number of failures, we find that simply in-
forming the operator that intervention was occurring,
using LEDs as a visual indicator, was not adequate. The
number of failures in Case 7 was four times that of Case
6, indicating that the audio alarms, particularly the high
frequency tone alarm, reduced the number of failures.

The effects of two different approaches to force feed-
back are isolated in a comparison of Case 3 to Case 5.
Neither of these cases had audio alarms or LEDs. In
Case 3, the actual grasp force, based on measurements
at the robot fingertips, is fed back to the operator. This
force remains nearly constant when intervention is ac-
tive. In Case 5, the force relayed to the operator is
based upon the operator’s commanded (desired) inter-
nal force. As seen in Table 2, the subjects used slightly
less internal force and experienced three times fewer
failures in Case 5 (see Figure 7). While the 6% force re-
duction is not statistically significant, the reduction in
dropped objects indicates that it is useful to feed back
forces proportional to the operators’ commanded force,
even as the robot holds the actual grasp force constant.
In accord with the operator’s expectations, the reduc-

tion in displayed force as the grasp is opened provides a
haptic cue useful for manipulation.

Based on the objective data analysis and the perfor-
mance criteria, Case 6, which combines robot interven-
tion, audio alarms, LED indicators, and reduced force
feedback, provides the best overall performance com-
pared to the bilateral control case. Further analysis in-
vestigating the possible effects of fatigue and learning is
presented in the appendix. However, based on this anal-
ysis, no evidence of learning and fatigue was found in
our study.

6.3 Subjective Data Analysis

In addition to having the subjects complete the
specified task to test the shared control system, a post-
experiment questionnaire was administered to obtain
qualitative data on the cases tested. Because the human
operator is an integral part of the shared telemanipula-
tion system, the expressed preference of the operator is
an important parameter in assessing the overall effective-
ness of a given case.

Subjects were asked to rank each case tested based on
preference. The ranking was on a scale from negative
two to positive two, corresponding to “disliked” and
“preferred,” respectively, with zero being “indifferent.”
Figure 8 shows the average ranking score for each case,
for all subjects, with the errors bars indicating two stan-
dard deviations. From the figure, we can see that Cases
6 and 7 were most preferred. A simple t-test analysis was

Figure 7. Total number of failures for each case for all subjects.
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performed to determine which cases had a mean prefer-
ence ranking significantly greater than zero. At the 95%
confidence level (p value " .05), Cases 2, 6, and 7 have
a ranking greater than zero, indicating that subjects pre-
ferred these cases. While clearly some subjects preferred
Case 2, the average ranking is much lower than for
Cases 6 and 7 (0.55 as compared to 1.18 and 1.18, re-
spectively). Interestingly, the two cases that subjects
disliked the most were the same cases that had the high-
est applied internal force on the object, that is, Cases 1
and 3.

Figure 9 shows the percent difference in mean inter-
nal force compared to Case 1, and Figure 10 shows the
average residuals based on order of task completion.
Figures 9 and 10 will be discussed further in the
appendix.

7 Conclusions

The performance of subjects during a shared-
control fragile object handling task was evaluated
through an objective data analysis. Utilizing results from
a statistical analysis of each subject’s measured internal
force for each case and the number of failures for each

of the given cases, several conclusions can be drawn. We
found that the addition of a shared control framework
could improve an operator’s ability to delicately and
securely handle an object compared to direct telema-
nipulation. In comparing the performance of all seven
cases, we further found that it is necessary to:

Figure 8. Average ranking of each case in terms of subjects’
expressed preference (error bars represent two standard deviations).

Figure 9. Average of each subject’s percent difference in mean
internal force for each case as compared to Case 1 (error bars
represent two standard deviations).

Figure 10. Average model residuals for all subjects based on order
of task completion (error bars represent two standard deviations).
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● inform the operator when the intervention is active
(in other words, it is necessary to let the operator
know that the robot has assumed control);

● inform the operator of impending state changes (in
particular, inform the operator that the robot may
release an object in its grasp if the operator’s com-
mands continue to diverge from the robot’s com-
mands); and

● feed back forces to the operator based on the oper-
ator’s commanded force rather than feeding back
the actual forces as measured by the robot during
robot intervention.
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Appendix: Learning and Fatigue Effects

To address the question of whether learning or
fatigue could have influenced the results, a model was
developed to describe the observed data. In this way, a
small set of parameters was used to develop a model
equation and then the model was used to estimate the
actual data. Using the model estimates, we can analyze
the residuals of the model prediction (as compared to
the observed data) to see how “good” the model is and
if there are any additional parameters, perhaps arising
from learning or fatigue, that should be added.

To investigate the differences in performance for each
of the cases, an initial model was developed that de-
scribes the data with a single parameter representing
each case. Thus, case-to-case comparisons can easily be
made with a comparison of the describing parameter
(assuming the model accurately describes the actual
data).

There are many possible ways to describe the differ-
ences in the observed case data. We chose to use the
averaged percent difference in measured internal force
for each case as compared to Case 1. The percent differ-
ence, based on each subject’s mean internal force for
each of the noncontrol cases, is computed as follows:

$$i, j % !
!fint$i,j% % !fint$1, j %

!fint$1, j %

(2)

where !fint(i, j ) is the mean measured internal force for
case i (i # 1, . . ., 7) and subject j ( j # 1, . . ., 11) and
$(i, j ) is the percent difference for Cases 2–7 compared
to Case 1 for each subject ($(1, j ) will always equal
zero). The percent difference parameter was specifically
chosen to help normalize the data and minimize the
effects of subject-to-subject variability in the model pa-
rameters. Each subject’s percent difference for a given
case is then averaged to form a single parameter, that
describes the given case in a meaningful way:

&i ! #
j#1

N $$i, j %

N (3)

where N is the total number of subjects. The averaged
percent difference parameters can then be multiplied by

each subject’s Case 1 mean internal force to formulate
an estimate of observed data. Thus, our single parame-
ter based model equation is:

!f int,estimate$i,j% ! $1 & &i% " !fint$1,j% (4)

for i # 1, . . ., 7.
To compare the cases, we analyze the mean percent

difference, our model parameter &i (and the standard
deviation of &i), for all subjects for each case. From Fig-
ure 9, the averaged percent difference in internal force
for Case 6 is roughly –15%. If we assume the data are
normally distributed, the empirical rule that 95% of the
data falls within two standard deviations of the mean
tells us that the Case 6 mean is significantly lower than
zero, thus the percent difference in force is significantly
less than Case 1 (this also holds for Cases 4 and 7),
which matches our earlier statistical results.

To determine how well the model describes the data,
we can perform an analysis of the model residuals. The
residuals are based on the difference between the ob-
served data (mean internal force) for each subject for
each case, f!int(i,j), and the estimated value for the mean
internal force for each subject for each case computed
using Eq. (4):

residual$i,j% ! !fint$i,j% % !fint,estimate$i,j% (5)

If all the residuals equal zero, then the model perfectly
describes the data set. For this model, the mean of all
the residuals is –0.01 N with a standard deviation of
0.24 N, both fairly small values indicating a good
model. However, investigating potential sources of
trends in the residual data can improve the model and
create a better description of the observed data.

To determine if learning or fatigue plays a significant
role in the observed data, we can group the residuals
according to task order performed by each subject. Fig-
ure 10 shows a plot of the means of the residuals for all
cases that occurred first, second, third, and so on. Also
shown are error bars of two standard deviations. Clearly,
the standard deviations are much larger than the mean
residuals values, thus we can confidently state that learn-
ing or fatigue effects were not significant.
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