DEPARTMENT OF MECHANICAL ENGINEERING

GRADUATE ADVISING GUIDE

2013-2014 ACADEMIC YEAR

MECHANICAL ENGINEERING GRADUATE ADVISING OFFICE

A.K. Balaji, Ph.D.
Director of Graduate Studies
225 KENN B – Kennecott Building
University of Utah, Salt Lake City, Utah 84112
Telephone: (801) 587-7772
FAX: (801) 585-9826
Email: balaji@mech.utah.edu

Kim King
Graduate Academic Advisor
2102 MEB – Merrill Engineering Building
Telephone: (801) 585-9293
FAX: (801) 585-9826
Email: grad@mech.utah.edu
<table>
<thead>
<tr>
<th>Section I: About the Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Mechanical Engineering Graduate Programs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section II: Degree Programs Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Comparison of Graduate Degree Requirements</td>
</tr>
<tr>
<td>Master of Science (thesis option)</td>
</tr>
<tr>
<td>Master of Science (non-thesis option)</td>
</tr>
<tr>
<td>Bachelor of Science/Master of Science Program</td>
</tr>
<tr>
<td>Master of Science/Master of Business Administration Dual Degree</td>
</tr>
<tr>
<td>Master of Engineering</td>
</tr>
<tr>
<td>Master of Philosophy</td>
</tr>
<tr>
<td>Doctor of Philosophy, Post-M.S.</td>
</tr>
<tr>
<td>Doctor of Philosophy, Post-B.S.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section III: About the Ph.D. Qualifying Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam Instructions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section IV: Ph.D. Proposal Defense and Dissertation Defense Summaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary Requirements</td>
</tr>
<tr>
<td>Appendix 2.1 – 2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section V: Student Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Support</td>
</tr>
<tr>
<td>Graduate Health Insurance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section VI: Index of Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important Policies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section VII: Graduate Course Offerings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representative Courses for Areas of Research Specialization</td>
</tr>
<tr>
<td>Graduate Course Schedules</td>
</tr>
<tr>
<td>Course Descriptions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section VIII: Student Resources and Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to Transfer Courses from another University</td>
</tr>
<tr>
<td>Resources around Campus</td>
</tr>
<tr>
<td>Useful Websites</td>
</tr>
<tr>
<td>Approved Math Electives</td>
</tr>
</tbody>
</table>
Section I: About the Department
DEPARTMENT OF MECHANICAL ENGINEERING
GRADUATE PROGRAMS

Degrees Offered
The Department of Mechanical Engineering at the University of Utah (abbreviated ME) administers graduate programs of study and grants the following graduate degrees in mechanical engineering:

- Master of Engineering*
- Master of Science (thesis and non-thesis)
- Master of Science/Master of Business Administration Dual Degree
- Master of Philosophy
- Doctor of Philosophy

*The Master of Engineering degree has been discontinued. Current M.EN. students may complete their degree in a timely manner.

Our Research
The faculty in the Department is actively engaged in teaching, research and service across a wide spectrum of areas within Mechanical Engineering. Even so, we can still divide our graduate program into four broad research areas: Thermal Fluids and Energy Systems; Solid Mechanics; Design, Ergonomics, Manufacturing and Systems; and Robotics and Controls.

Thermal Fluids and Energy Systems
The TFES Division has active, well funded programs in the areas of bioheat transfer, combustion, wind turbine design, air-born pollutant transport, acoustics, rocket propulsion, gas turbine heat transfer, and the physics and modeling of turbulence. The Department also has strong research in sustainable energy. We also have connections to the Center for Sustainability Research, which stimulates multidisciplinary research across campus.

Solid Mechanics
Students in Solid Mechanics study the behavior of solid materials and objects such as beams, shafts, columns, and structures. They research how these objects break, shatter, fracture, bend and splatter. Then they learn how to make these objects fail resistant and how to develop new materials for use by society.

Design, Ergonomic, Manufacturing, and Systems
Students in this division study a wide array of topics, from integrating computer aided design and manufacturing tools to crafting machines that help people work more safely and efficiently.

Controls and Robotics
Robotics is the intelligent connection of perception to action. The School of Computing and the Department of Mechanical Engineering are pleased to jointly offer the second graduate program in robotics in the US, with a curriculum that imparts fundamental knowledge about robotics and specific courses in perception, cognition, and action. Reflecting robotics' interdisciplinary nature, the Robotics Track faculty and the curriculum show equal involvement from the School of Computing and the Department of Mechanical Engineering. A varied research program addresses diverse topics such as intelligent agents, hybrid mobile robots,
humanoid robots, haptic interfaces, and personal assistive devices.

Specific research topics in the Department:
- Bio-Mechanical Engineering
- Composite Materials
- Controls
- Design
- Energy Systems
- Ergonomics & Safety
- Fluid Mechanics
- Heat Transfer
- Manufacturing
- Microsystems & Nanosystems
- Thermodynamics
- Robotics
- Solid Mechanics

About Our Policies

ME graduate programs are operated according to the policies and procedures of the Graduate School. The Graduate Student Handbook, which documents all important policies and procedures, is accessible through the University of Utah website at www.gradschool.utah.edu. The handbook is a comprehensive source of information about admission, registration, financial aid, housing, campus facilities, degree requirements and departmental degree programs.

The Department and the University seek to provide equal access to its programs, services, and activities to people with disabilities.

Any requests for exceptions to these general admission policies should be directed in writing to the ME Director of Graduate Studies.
Section II: Degree Programs Offered
Table 5: Numerical Comparison of Graduate Degree Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Ph.D. Program (post-R)</th>
<th>Ph.D.</th>
<th>M.S.</th>
<th>M.S. (Non-Thesis)</th>
<th>M.S. (Thesis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Limit (Years)</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Supervisory Committee Members (mínimo must be regular ME Faculty)</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Minimum credit hours for full-time students</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Maximum credit hours taken as an undergraduate applied to graduate degree</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Maximum non-mandatory credit hours</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Maximum master's credit hours</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Maximum credit hours for ME EN 6970 Ph.D. Dissertation</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Minimum credit hours for ME EN 6930 Master of Engineering Project</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Credit hours for ME EN 6975 Thesis Research</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Minimum credit hours in area of emphasis</td>
<td>NA</td>
<td>NA</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Minimum regular graduate standing course credit hours at 7000 level</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Minimum regular graduate standing course credit hours</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Minimum graduate standing course credit hours</td>
<td>26</td>
<td>18</td>
<td>26</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Minimum total credit hours</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Notes:

1. ME EN or allied field, 6000/7000 level, not including ME EN 6955 Master of Engineering Project, ME EN 6975 Research and Thesis: Master of Science, ME EN 7980 Master of Science, ME EN 7990 Continuing Registration: Master of Science, ME EN 7980 Faculty Consultation: Master of Science, ME EN 7970 Ph.D. Dissertation, ME EN 7990 Continuing Registration: Doctoral, ME EN 6955 Master of Engineering Project, ME EN 6975 Research and Thesis: Master of Science, ME EN 7980 Master of Science, ME EN 7990 Continuing Registration: Doctoral.

2. "Regular" ME EN courses = scheduled classroom/laboratory courses including 6960, 7960.

MASTER OF SCIENCE, THESIS

About the Degree

The Master of Science, thesis (MST) is a research-oriented degree. A student who intends to pursue the Ph.D. degree at a later stage is encouraged to pursue the MST rather than the Master of Science, non-thesis or the Master of Engineering degree because of its research orientation.

Course Requirements

- 21 credit hours in courses relevant to the student's academic program
 - Of which, 12 credit hours must be in regular ME courses
 - Of the 12, at least 3 credit hours must be 7000-level, regular ME courses
- 9 credit hours of MEEN 6975 (graded CR/NC)
- No more than 3 credit hours of Independent Study (MEEN 6950) may be used. Note that these credit hours do not count as “regular” ME courses.
- Only courses in engineering, mathematics, and science are acceptable.
- All regular courses to be counted toward the degree must be graded at B- or higher

Supervisory Committee

The student must select a permanent supervisory committee chair by the end of the second semester in the program. Committees must meet the following requirements:

- The supervisory committee consists of three University faculty holding tenured, tenure-track, or research positions.
- The student’s advisor serves as the chair of the supervisory committee.
- At least two of the three committee members must be regular faculty from the Department of Mechanical Engineering.
- Two of the three committee members must have a research specialty consistent with the student’s specialization area.

Program of Study

The program of study and thesis work is completed under the direction and approval of the supervisory committee. The committee chair (the student’s advisor) will assist the student in planning the program of study, and should encourage breadth by selection of one or more courses outside of the Department in areas such as basic science, statistics, and mathematics. Graduate courses should be selected after consultation with the student's permanent supervisory chair, temporary advisor, or the Director of Graduate Studies. The cumulative GPA of courses listed on the program of study must be greater than or equal to a 3.0.

Approval process

1. The student must obtain and fill out the MS Thesis Program of Study form.
2. The student must list all classes - past, present and future – that are to count toward the MST, including research hours.
3. Seven months prior to graduation, the student must gather original signatures from all three committee members, and then submit the form to the Graduate Advisor.
4. The Graduate Advisor will then input all the information from the paper form into the electronic records system via CIS.
5. The three committee members, the Director, and the Dean of the Graduate School will all have to electronically approve the program of study. Students can monitor this process by
logging into CIS, locating the Graduation panel under their student information, then clicking on “Graduate Student Summary.” It is the responsibility of the student to monitor their online records and to secure the proper approvals.

Thesis Defense

The thesis requirement reflects the research orientation of this degree. The research work associated with a Master of Science thesis should involve close collaboration with a faculty member. The thesis typically represents two years of research. Specifically, in a clearly documented manner, the thesis must:

- Reflect an understanding of the current and past state of knowledge in the chosen research area through a comprehensive literature review of the subject.
- Clearly state the goals of the research and justify the value of the research results to the engineering and/or scientific community.
- Result in a substantive contribution to the engineering and/or scientific community.

The student is required to defend the thesis and research work at a formal oral presentation that is open to the public.

Scheduling the defense

1. Students must first communicate with their committee members to find a date and time for the defense. Students must schedule their defense at least two weeks in advance.
2. Students need to submit a complete and formatted copy of their thesis to each committee member at least two weeks before the scheduled defense date.
3. Once a date has been set, students can see the Graduate Advisor to schedule the ME Conference Room. If the ME Conference Room is not available, students will need to check with the other departments in the college to schedule a room.
4. As soon as students have found a date, time, and place for the defense, they must send the Graduate Advisor the title and abstract of their thesis. The advisor will then send the student important forms and information for the day of the defense.

Defense paperwork

Table 6. The Five Forms Required at the Defense:

<table>
<thead>
<tr>
<th>Form Name</th>
<th>Purpose</th>
<th>Who prepares it</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report of the Final Exam</td>
<td>Indicates that the student has passed the defense</td>
<td>Graduate Advisor</td>
</tr>
<tr>
<td>Report of the Comprehensive Exam</td>
<td>Indicates that the thesis and presentation are satisfactory</td>
<td>Graduate Advisor</td>
</tr>
<tr>
<td>Recommendation for Ph.D. Studies*</td>
<td>Used to report whether the committee recommends the student to continue on in the Department at the Ph.D. level.</td>
<td>Graduate Advisor</td>
</tr>
<tr>
<td>Supervisory Committee Reading Approval**</td>
<td>Indicates that the thesis is ready for format corrections. This form goes in the front of the finished, published thesis.</td>
<td>The student, on white paper, one copy</td>
</tr>
<tr>
<td>Final Reading Approval**</td>
<td>Indicates that the entire thesis is ready for publication. This form goes in the front of the finished, published thesis.</td>
<td>The student, on white paper, one copy</td>
</tr>
</tbody>
</table>
* A recommendation against continuing to the Ph.D. will not preclude the student from
being accepted into the program, but could make an application to the Ph.D. more difficult.

**If the committee approves the content of the manuscript, they will sign these forms
immediately following the defense. If not, the student must make whatever corrections the
committee recommends, and then have them sign the forms.

After the defense
1. Once the committee approves of the thesis content, students must submit their manuscript
 - with signed thesis sheets - to the Department Chair for approval.
2. After the chair approves the thesis and signs the sheets, students must submit their
 manuscript and sheets to the Thesis Editor to begin format approval. This must be done in
 accordance with Graduate School deadlines in order to graduate in a given semester:
 http://www.gradschool.utah.edu/students/masters_calendar.php.
3. Thesis must be approved by Thesis Editor within one semester of defense at the most.
4. Once format corrections are finished, the student must then work with the Thesis Office
 to submit their manuscript to ProQuest or USPACE for online viewing.
5. After each of these steps is completed, the student will be cleared for graduation. Please
 note that a student is not considered “graduated” for merely passing the defense. The
 thesis must also successfully pass corrections and be published before a degree may be
 awarded.
MASTER OF SCIENCE, NON-THESIS

About the Degree

The Master of Science, non-thesis (MSNT) degree is designed to provide an in-depth educational experience in a specific area of emphasis and to provide more breadth at an advanced level through elective courses in complementary areas. As opposed to the MST, there is no required research component. Students desiring some research experience may construct an independent study contained within a single semester. Students desiring a rigorous research experience or who are planning to pursue the Ph.D. degree are encouraged to pursue the MST.

Course Requirements

- A total of 30 credit hours are required, which includes 15 credit hours of mechanical engineering focus courses and 15 credit hours of electives in Math, Science or Engineering.
- The courses listed as focus courses constitute the core of the student’s emphasis at the graduate level.
- At least 6 credit hours must be 7000-level, 3 of which must be a mechanical engineering focus course.
- No more than 3 credit hours of Independent Study (MEEN 6950) may be used. Note that these credit hours do not count as “regular” ME courses.
- The student must obtain a GPA equal to or greater than a 3.3 (B+) in each focus course.
- The student must obtain an overall GPA equal to or greater than a 3.0 from all courses taken.

Supervisory Committee

The student must select a permanent supervisory committee chair no later than the end of the second semester in the program. Committees must meet the following requirements:

- The supervisory committee consists of three University faculty holding tenured, tenure-track, or research positions.
- The student’s advisor serves as the chair of the supervisory committee.
- At least two of the three committee members must be regular faculty from the Department of Mechanical Engineering.
- Two of the three committee members must have a research specialty consistent with the student’s specialization area.

Program of Study

The program of study and thesis work is completed under the direction and approval of the supervisory committee. The committee chair (the student’s advisor) will assist the student in planning the program of study, and should encourage breadth by selection of one or more courses outside of the Department in areas such as basic science, statistics, and mathematics. Graduate courses should be selected after consultation with the student’s permanent supervisory chair, temporary advisor, or the Director of Graduate Studies. The grades of all courses listed on the program of study must be greater than or equal to a 3.0 and the grades in the five focus courses must be greater than a B+.

Approval process

1. The student must obtain and fill out the MS Non-thesis Program of Study form.
2. The student must list all classes - past, present and future – that are to count toward the MSNT, including transfer hours.

3. Seven months prior to graduation, the student must gather original signatures from all three committee members, and then submit the form to the Graduate Advisor.

4. The Graduate Advisor will then input all the information from the paper form into the electronic records system via CIS.

5. The three committee members, the Director, and the Dean of the Graduate School will all have to electronically approve the program of study. Students can monitor this process by logging into CIS, locating the Graduation panel under their student information, then clicking on “Graduate Student Summary.” It is the responsibility of the student to monitor their online records and to secure the proper approvals in a timely manner.

Final Exam
A Comprehensive Final Exam is required. The purpose of the exam is to test the student’s competency in the chosen area of focus. Students admitted before Fall 2012 will have the choice to take the Comprehensive Final Exam under the format that was in place before Fall 2012. All students admitted for Fall 2012 and after must take the Comprehensive Final Exam under the current format.

Comprehensive Final Exam Format before Fall 2012

The supervisory committee administers the exam, which must address all five core classes making up the focus.

Scheduling the exam
The exam may be taken no sooner than the semester in which all core classes are to be completed. Exams may not be scheduled during the 12th week of the semester, when Ph.D. qualifying exams are being held.

1. Students must first communicate with their committee members to find a date and time for the exam. Students must schedule their exam at least two weeks in advance.

2. The student must also coordinate with the committee with regard to the five focus classes and which members will oversee examination for which classes.

3. Examiners must then initial next to each focus class on the Program of Study form.

4. Once a date has been set, students can see the Graduate Advisor to schedule the ME Conference Room. If the ME Conference Room is not available, students will need to check with the other departments in the college to schedule a room.

5. At one week prior to the exam and at one day prior to the exam, the student must send reminder emails to the committee, detailing exam date, exam time, a list of the focus classes, and which professor is overseeing which exam.

During the exam
The exam consists of both written and oral components, both of which are expected to be taken in the same day. The written exam is two hours in length and has an open-book format. Laptops are not permitted during the written exam. If electronic notes and/or Canvas/WebCT resources are necessary for taking the exam, the written can be held at the on-campus Testing Center. Exams need to be scheduled with the Grad Advisor three weeks in advance in order to schedule the Testing Center.

The oral exam is approximately one hour in length and must follow the written exam. There is a one-hour break between the oral and the written portions. The committee members
need only be present for the oral portion.

After the exam
1. After the oral portion, the student will be excused for deliberation.
2. If the committee votes to pass the student, the student will be informed and will be ready to graduate.
3. In the event that the exam is not passed, it must be retaken. The student is expected to retake the exam no sooner than two months and no later than one year after the original exam.

Comprehensive Final Exam Format after Fall 2012

• Supervisory committee:
The student sets up a MS non-thesis supervisory committee based on the student’s area of interest in the ME graduate program. One of these committee members will be selected as chair of the committee. This committee will need to follow the rules from the Graduate School with respect to composition of the committee (majority of the committee has to be tenured/tenure-track faculty). The supervisory committee is instrumental in guiding the student through the non-thesis program of study and is actively involved in approving a program of study and monitoring the student’s satisfactory progress through his/her program of study. The supervisory committee will also sign and approve necessary academic paperwork. It is recommended that the student forms a supervisory committee and selects a chair as early as possible. The latest date by which the supervisory committee needs to be set up is the end of the semester immediately prior to the semester in which the student takes the comprehensive exam.

• Format Overview

 Exam format: The exam is a written test based on the student’s 3 selected focus courses. The exam is open-book and open-notes. The exam duration is three hours.

 Exam administration:

 Examiners for the MS non-thesis comprehensive exam: The student will indicate three out of five focus courses on which he/she intends to be tested. The graduate committee will assign examiners for the different exam areas/courses. The examining committee does not need to follow graduate school rules on a minimum number of tenured/tenure-track faculty. The examiners for the non-thesis comprehensive exam will provide their exams to the graduate advisor two weeks prior to the exam date. These course-specific exams will also be made available to the supervisory committee members for each student prior to the exam (for feedback, if any). After the examiners have graded the exam, copies of the exam performance appraisal (pass/fail with comments) and the actual exam will be disseminated to the student’s supervisory committee. The student’s supervisory committee will then sign final paperwork related to the exam.

 When to take the exam: Students typically take the comprehensive exam during their last semester of their graduate studies. A student may petition the graduate committee to take the exam earlier in their program of study. The student must be enrolled during this semester in which they are appearing for the comprehensive exam. Comprehensive exams are not administered during Summer.
Retakes: Students will have one chance to retake the exam the next semester. Students must register for the retake during the first week of the next semester. If a student does not pass the exam at the second attempt, then that student will be dismissed from the Department of Mechanical Engineering’s Master’s program.

- Prior to the Exam: Detailed Procedures
 1. Notification of Intent: By the first week of the semester, the student will be required to submit a Notification of Intent to take the Comprehensive Exam.
 2. Exam Date: The exam will typically take place from 9 am – 12 noon on the Saturday of the 14th or 15th week of the semester (Fall or Spring only). The exact date, time and location will be announced during the third week of the semester.

V. During the Written Exam: General Rules and Procedures
 - The written exam will take 3 hours to complete with each subject area being allotted 1 hour each.
 - It is expected that the exam will test the comprehensive as well as integrative knowledge of the student.
 - The exam is open book and open notes. Laptops are not permitted during the exam. In case a student needs access to data on Canvas, they will have to arrange to take the exam in the testing center.

After the Exam: Scoring
 - Each subject area of the exam will be graded on a 100 point scale.
 - A score of 75 or higher in each subject area indicates a passing grade in the exam.
 - Students will have to pass all three subject area portions in order to pass the comprehensive exam. In case the student does not pass a subject area, they will be deemed a partial pass and will still have to pass any failed subject areas during their one retake opportunity.
 - The examining or supervisory committee may require a follow-up oral exam (the following week) in case they need additional clarification on the performance in the written exam.
 - Scores will be made available by the end of Week 16.
 - Due to graduation deadline requirements, examiners are requested to grade and score the exam within 5 days from the exam date.
Exam paperwork
Table 7 describes the paperwork that must be signed at the conclusion of the exam.

Table 7. Forms Required at the Exam:

<table>
<thead>
<tr>
<th>Form Name</th>
<th>Purpose</th>
<th>Who prepares it</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report of the Comprehensive Exam</td>
<td>Indicates that the student has passed the written exam</td>
<td>Graduate Advisor</td>
</tr>
</tbody>
</table>

Research and/or Project Requirements
There are no research and/or project requirements for the degree. In the event that a student desires to conduct a research project, such as the case where the research could be applied to a subsequent Ph.D. dissertation topic, the project should be conducted as an ME EN 6950 - Independent Study course. Should a project be undertaken, a formal presentation and/or defense of the research project are not required. Under no circumstance may a project defense be substituted for the Comprehensive Final Exam requirement.
BACHELOR OF SCIENCE/MASTER OF SCIENCE PROGRAM

About the Program

For undergraduate students interested in vigorous pursuit of research, the Department offers a combined degree program intended to foster undergraduate research and to accelerate progress toward the M.S. degree. The program allows advanced students to complete both their B.S. and M.S. degrees in five years, one year earlier than if the degrees were done separately. This gives students an advantage in the job market by providing them with more training, an advanced degree, more research experience and increased earning potential.

Students are accepted into the BS/MS program in the spring of their junior year. During the senior year, 2 of the 4 undergraduate technical electives are taken at the graduate level and are counted toward the M.S. degree. This means the B.S. degree is shortened by 6 credit hours. The students also use their senior year to get started on their independent thesis research. Then, during the final year (the 5th year of a 4-year B.S. degree), students finish their graduate coursework and research and defend their thesis. At the end of the 2-year program, students graduate with their B.S. and M.S. simultaneously.

Financial Aid Opportunities

Students in the BS/MS Program may receive financial support in the form of an hourly position during the fourth year. After students are admitted to the Graduate School and classified as an M.S. student, they may receive funding as a research assistant and are eligible for the University of Utah Tuition Benefit Program.

Program Requirements

To be accepted into the BS/MS Program, students must meet the following requirements:

• Mechanical engineering major at the University of Utah
• Junior status in the major (i.e., currently taking the Mechatronics sequence and anticipating B.S. graduation after one more year)
• 3.5 GPA
• Taken the GRE (a quantitative score about the 80th percentile is required)

Application Procedures

December:
• Take the GRE. Winter break is the ideal time to take the GRE since fall finals are done but spring classes have not yet started. Taking the GRE in December also gives the scores enough time to be processed and received by the Department.

February:
• Attend the BS/MS question-and-answer meeting. Notices of the meeting will be sent out in January to all Mechatronics students.

March:
• To be accepted into the program, students must formally apply during the spring of their junior year. Students apply by submitting the following materials to the ME Graduate Office:
 o Application Form
 o Statement of Purpose
 o Current Resume
 o GRE scores
 o Letter of recommendation from 1 ME faculty member
• These materials must be submitted according to the deadline explained at the February meeting. No late applications will be accepted. The Graduate Committee decides admissions to the program by April 15 each year.

Program Procedures

Once students are accepted into the BS/MS program, they have several checkpoints they must pass in order to graduate two years later with two degrees. These checkpoints are designed to keep students on track:

Summer between Junior and Senior Years:
• Students are encouraged to begin their research for the M.S. degree. Research work may be incorporated into the Senior Capstone Design Sequence (see “Research” section below).
• Students should clear with undergraduate advisor that they have taken two 5000-level technical electives and should confirm what B.S. degree requirements remain.

Senior Year:
• Enroll for a minimum of two 6000-level technical electives
• Present a poster of the thesis research at Senior Design Day (see “Research” section below)
• If the GRE quantitative score is less than the 80th percentile, the student will need to retake the GRE and achieve that score
• Apply for Fellowships by January 15
• Apply for graduate status by April 1 (fall admission) or March 15 (summer admission). This must be done in accordance to the application procedures for all ME graduate students, with the following rules:
 o The statement of purpose used for the application to the BS/MS program may be reused.
 o Only 1 letter of recommendation is required (as opposed to the regular 3). The letter must come from the student’s research advisor. If the research advisor also wrote the letter of recommendation for the BS/MS application, that letter may be reused.
 o If the GRE quantitative score from the junior year is above the 80th percentile, the junior-year scores may be reused. If not, the GRE must be retaken and a score higher than the 80th percentile must be achieved.
• Complete a poster detailing your thesis research so far (see below). M.S. Fall Semester by October 25:
• Submit MS Thesis Program of Study form with all three signatures
• Submit BS/MS requirements form
• Apply for Spring graduation through the Graduation Office for both the B.S. and the M.S.

M.S. Spring Semester:
• Defend thesis. Note that depending on the topic of research, completing the requirements for the thesis may take longer. The student is encouraged to meet with his/her faculty advisor to ensure that thesis milestones are met in a timely manner.
• Obtain content approval from committee and from Department Chair
• Obtain format approval of thesis from University Thesis Editor
Research

Students are encouraged to begin their research work for the M.S. degree during the summer between their third and fourth years of the four-year undergraduate program. Research work may be incorporated into the Senior Capstone Design Sequence. Examples of potential ways to combine research and other course requirements during the senior year are given below.

• Incorporate work on the senior design project into the thesis research. Projects begun in Senior Design may form the foundation for the thesis research. This will require some adapting on the student’s part. Thesis research must be more in-depth than senior design projects and must be original research that contributes new knowledge to the field. Students expecting to specialize in Design and Manufacturing at the graduate level may be best suited for this alternative.

• Work independently with the faculty advisor on thesis research which is separate from the senior design project. This work will need to be done in the student’s spare time, such as during the summers and in lieu of heavy course loads. Students using this option may also participate in UROP opportunities.

Students must present a poster about their research during the spring of the senior year. The poster should be the same dimensions as the Senior Design poster and are uploaded to www.uspace.utah.edu by 5 p.m. on the last day of spring finals. The BS/MS poster must include:

• A clear focus demonstrating the topic for the thesis research
• A demonstration of the purpose for the thesis research. How will this research contribute to the field?
• An explanation of the method that will be used during the 5th year to gather data
• If preliminary data has already been gathered during the senior year, an explanation of how that data was gathered and what its significance could be for the coming year.

Other BS/MS Program Policies

All policies and procedures for the MST degree also apply to BS/MS students. Please see that section for further details.

Students complete a minimum of 152.5 semester credit hours of qualified study for both degrees:

- A minimum of 30 semester credit hours must satisfy the Department’s requirements for the M.S. (thesis option) degree.
- A minimum of 122.5 semester credit hours must meet the B.S. degree requirements of the University of Utah, the College of Engineering, and the Department. The minimum number of credit hours for the combined programs is 6 less than that required for the traditional B.S. and M.S. degrees obtained separately.

The only graduate degree that students may pursue in the combined program is the Masters of Science (thesis option). Students may not be awarded graduate degrees of Master of Engineering or Master of Science (non-thesis option) in the combined BS/MS program.

Courses listed at both the 5000 and 6000 level must be taken at the 6000 level if they are to be applied to the M.S. degree.
Students must take a minimum of 6 credit hours of graduate credit the senior year. They may take up to a maximum of 12 credit hours of graduate credit.

Transfer from undergraduate to graduate status occurs after completion of the B.S. degree requirements. A student is eligible for the Tuition Benefit Program administered by the Graduate School after graduate status is conferred.

The supervisory committee must conduct a mid-program review after 2 semesters in the BS/MS Program.

Both the B.S. and M.S. degrees are conferred simultaneously following completion of the program.

No student will be awarded a separate M.S. degree without satisfying all requirements for the B.S. degree.

Students wishing to exit the combined program can apply qualified coursework toward the traditional B.S. and M.S. (or M.EN.) degree requirements without penalty.
MASTER OF SCIENCE/MASTER OF BUSINESS ADMINISTRATION
DUAL DEGREE PROGRAM

About the Program
The MS/MBA program combines students' applied interests and training in Engineering with the comprehensive business sense developed in a full-time MBA program. The result is a professional comfortable moving between technical and commercial issues. MS/MBA graduates will be, with appropriate experience, qualified to direct or manage the transition of new products, processes and systems from the laboratory to the board room.

Graduates of the MS/MBA program earn two distinct degrees in one integrated educational experience. In general, students take 21 credit hours in the College of Engineering, 47 hours in the College of Business and a 6 hour capstone project course taught across the Colleges. Up to 9 credit hours appear on the program of study for both degrees eliminating up to 18 credit hours that would be required to complete the two programs separately. The net is a two year MBA and a one year M.S. completed in two years - a considerable time and cost advantage.

Financial Aid Opportunities
Students in the MS/MBA Program typically find funding sources outside the Department. Some may receive Departmental financial support in the form of grader positions.

Program Administration
The dual degree is jointly administered by the Department of Mechanical Engineering and the David Eccles School of Business (DESB). The engineering portion of the degree is a Master of Science, non-thesis degree. All MSNT policies and procedures apply to MS/MBA students. Students should also acquire program information from the DESB regarding the MBA portion of the degree.

Application Procedures
Students should apply to both the DESB and to the MSNT simultaneously and separately. Students will have to fill out the University general application twice, in addition to completing both degrees’ departmental application procedures. Application procedures for the MSNT are available at the beginning of this handbook. Application procedures for the MBA are available through the DESB.

Coursework
MSNT (30 credits total):
1. 15 credit hours of MEEN courses that form a focus
2. 6 credit hours of electives in Math, Science or Engineering
3. 6 credit hours of capstone (double-counted toward the MBA)
4. 3 credit hours from this list (double-counted toward the MBA):
 o Finance 6380, Finance 6390, Finance 6400, IS 6420, IS 6482, IS 6483, OIS 6425, or OIS 6610
 o OIS 6610

Table 8 shows the typical course schedule of a dual-degree student. Please note: a week-long orientation and teams course precedes the first fall semester.
Table 8. MS/MBA Example Course Schedule

<table>
<thead>
<tr>
<th>Program Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once students are accepted into the MS/MBA program, they proceed through each degree according to the coursework matrix above. The engineering courses should be chosen by the student in conjunction with his/her ME faculty advisor.</td>
</tr>
</tbody>
</table>

* By the end of the first year:
 - Students should have a permanent ME faculty advisor and a DESB mentor to monitor the capstone work
 - Students should form a 3-person committee with their ME advisor as the chair

* During Fall Semester of the second year:
 - Submit capstone proposal
 - Submit *MS Non-thesis Program of Study* form to ME Advising Office
 - Apply for spring graduation

* During Spring Semester of the second year:
 - Complete capstone project
 - Obtain sign-off on capstone by ME committee chair, ME Director, and DESB Dual Degree Director
 - Schedule, take and pass MSNT final comprehensive exam
MASTER OF ENGINEERING

About the Degree

The Master of Engineering degree (M.EN.) is a non-thesis application-oriented engineering degree. It is designed for those who wish to pursue work beyond the Bachelor of Science degree in engineering but who do not plan to pursue graduate level research as part of their graduate program. (A student who intends to pursue the Ph.D. degree is encouraged to pursue the MST degree rather than the M.EN. degree because of its research orientation.)

The M.EN. is being discontinued. As of the spring 2010 semester, no further applicants are admitted to this degree program. Current students in other degree programs may not switch to the M.EN.. Current M.EN. students are permitted to finish their degrees in a timely manner.

Administration of the Degree

The M.EN. is offered by the Department and is administered through the College of Engineering following essentially the same general guidelines that apply to the administration of the MST, except for the research emphasis.

Course Requirements

- A minimum of 30 credit hours of approved courses in engineering and allied fields is required.
 - Of those 30, 15 credit hours must be regular course work in the Department
- Unlike the M.S. degree options, there is no 7000-level course requirement.
- Only courses in engineering, mathematics, and science are acceptable.
- All regular courses to be counted toward the degree must be graded at B- or higher
- No more than 3 credit hours of Independent Study (MEEN 6950) may be used. Note that these credit hours do not count as “regular” ME courses.

Supervisory Committee

The student must select a permanent supervisory committee chair by the end of the second semester in the program. By the end of the second semester a three-faculty member supervisory committee must be formed by submitting a Request for Supervisory Committee form:

- The supervisory committee consists of three University faculty holding tenured, tenure-track, or research positions.
- The student’s advisor serves as the chair of the supervisory committee.
- Two of the three committee members must be regular faculty from the Department of Mechanical Engineering.
- Two of the three committee members must have a research specialty consistent with the student’s specialization area.

If the members of the committee change at a later date, a Request to Change Supervisory Committee Form should be submitted to the Graduate Advising Office.

Program of Study

The program of study and thesis work is completed under the direction and approval of the supervisory committee. The committee chair (the student’s advisor) will assist the student in
planning the program of study, and should encourage breadth by selection of one or more courses outside of the Department in areas such as basic science, statistics, and mathematics. Graduate courses should be selected after consultation with the student's permanent supervisory chair, temporary advisor, or the Director of Graduate Studies. The grades of courses listed on the program of study must be greater than or equal to a 3.0.

Approval process
1. The student must obtain and fill out the Program of Study form.
2. The student must list all classes - past, present and future – that are to count toward the M.EN., including project hours. The form must be typed.
3. One semester prior to graduation, the student must gather original signatures from all three committee members, and then submit the form to the Graduate Advisor.
4. The Graduate Advisor will then gather the approval of the Director of Graduate Studies and the Dean of the College.
5. Copies of the approved form will be available in the Graduate Advising Office for the student’s records.

Changes to the program of study must be requested through the Amendment to Program of Study form, which must be signed by the student’s advisor/committee chair.

Master of Engineering Project
No formal thesis is required for the M.EN.. However, students are required to undertake an engineering project approved by their committee chair, consisting of 3 credit hours (included in the 30 credit hours required) of M.EN. Project (ME EN 6955), which is taken in lieu of master’s thesis research credit or independent study credits. The project should be equivalent to one full semester of research, as opposed to the two years of research required for the MST.

To waive the project requirement, the student must provide documentation, which demonstrates completion of an engineering project similar in scope using technical reports, publications, or other items acceptable to the supervisory committee. Waiver of the project is approved by majority vote of the supervisory committee.

Project Defense
The culmination of the project research is a written document describing the project in detail. The student is required to defend the project and research work at a formal oral presentation that is open to the public.

Scheduling the defense
1. Students must first communicate with their committee members to find a date and time for the defense. Students must schedule their defense at least two weeks in advance.
2. Once a date has been set, students can see the Graduate Advisor to schedule the ME Conference Room. If the ME Conference Room is not available, students will need to check with the other departments in the college to schedule a room.
3. As soon as students have found a date, time, and place for the defense, they must send the Graduate Advisor the title and abstract of their thesis. The advisor will then send the student important forms and information for the day of the defense.

During the defense
The defense will begin with the student’s presentation of the project. Following the presentation are questions from the audience. The audience is then excused and oral examination
by the committee begins. This examination will cover topics related to the student's engineering project, and can also include material from courses taken to satisfy the degree requirements.

After the defense
1. Once the oral examination is complete, the student will be excused for deliberation.
2. If the committee votes to pass the student, the student will be informed and will need to submit a hard copy of the project to the Graduate Advisor.
3. In the event that the exam is not passed, it may be retaken. The student is expected to retake the exam no sooner than two months and no later than one year after the original exam.

Simultaneous Candidacy
Students in the Department are not allowed to be students for the M.EN. degree and a research oriented degree (M.S. or Ph.D.) simultaneously in Mechanical Engineering or in a combination of departments. Students who are completing research degrees outside the College of Engineering cannot simultaneously be students for the M.EN. in the College of Engineering.
MASTER OF PHILOSOPHY

About the Degree
The Master of Philosophy (M.Phil.) degree requires the same qualifications for admission and scholarly achievement as the Ph.D. degree but does not require a doctoral dissertation or defense. There is no separate program for this degree. All regulations covering the Ph.D. degree with respect to supervisory committees, course credit hour requirements, and qualifying examinations also apply to the M.Phil. degree. Like the Ph.D., the M.Phil. is a terminal degree. A student is not considered a candidate for both degrees in the Department.

Pursuing a Ph.D. after the M.Phil.
Students awarded the M.Phil. degree in Mechanical Engineering and who wish to pursue a doctorate in Mechanical Engineering must have their M.Phil. rescinded by formal action of the Graduate Council. This action must be initiated by a written recommendation from the Graduate Committee and a written request from the student.

Exceptions
Individual student exceptions to the general requirements for the master's degree stated above must be approved by the Dean of the Graduate School upon recommendation of the student's supervisory committee and the Director of Graduate Studies or Department Chair.
DOCTOR OF PHILOSOPHY, POST-M.S.

The Doctor of Philosophy degree is designed to give students in-depth study in a particular research emphasis. Compared to our master’s students, a larger percentage of doctorate students receive funding. Additionally, the funding they receive is typically in greater amounts than for the master’s. Doctorate students have more say in crafting their topics and designing their research. In the workforce, doctorate graduates earn more than graduates with only a master’s. They have the flexibility to choose a career in industry, research, or education.

A student may apply for the Ph.D. post-M.S. program after completing a Master of Science (thesis or non-thesis) degree from an accredited institution. Although not recommended, a Ph.D. degree may be pursued after completion of the Master of Engineering degree provided approvals from the Master of Engineering supervisory committee and the Departmental Graduate Committee are obtained.

Course Requirements (post M.S. degree)
• A minimum of 32 total credit hours.
• A minimum of 18 credit hours of approved graduate course work.
• A minimum of 12 credit hours in regular Mechanical Engineering graduate courses.
• A minimum of 6 credit hours in regular Mechanical Engineering classes at the 7000 level.
• A maximum of 3 credit hours of ME EN 6050 - Independent Study taken after the completion of the Master of Science degree may be applied to the Ph.D. degree.
• Upper division course work in allied fields is allowed.
• A minimum of 14 credit hours for ME EN 7970 - Ph.D. Dissertation.

Additional Requirements
• Successful completion of the Ph.D. Qualifying Examination
• Successful completion of the Research Comprehensive Examination
• Successful completion of an approved research program representing at least 14 credit hours of ME EN 7970.
• Successful oral defense of the Doctoral dissertation and successful approval of a written dissertation before the supervisory committee.

Faculty Advisor
The student must select a permanent advisor by the end of the first semester of Ph.D. degree work. The advisor oversees the Ph.D. student’s program, gives recommendations for selecting courses and supervises the dissertation research. It is recommended that the advisor be a tenured/tenure-track faculty member of the Department.

Ph.D. Qualifying Examination
The first checkpoint in a doctorate student’s career is the Qualifying Exam. Students must pass this exam in order to be officially admitted to candidacy in the Ph.D. program. The exam is directed at testing students’ understanding and application of basic concepts and mastery of technical knowledge in different areas. The exam is administered near the end of the Fall and Spring semesters, and should be taken early in the student’s Ph.D. program. Please see the chapter, “Ph.D. Qualifying Exam Student Instructions” for full exam procedures.
Supervisory Committee

After successful passage of the qualifying exam, a five-faculty-member supervisory committee is selected. The chair of this committee is the student’s permanent advisor. The other members of the committee are selected by the committee chair in consultation with the student. The Graduate Committee may make recommendations regarding committee membership. A majority of the supervisory committee members must be faculty members from the Department. At least one member must be from outside the Department.

Program of Study

The program of study and thesis work is completed under the direction and approval of the supervisory committee. The committee chair (the student’s advisor) will assist the student in planning the program of study, and should encourage breadth by selection of one or more courses outside of the Department in areas such as basic science, statistics, and mathematics. Graduate courses should be selected after consultation with the student's permanent supervisory chair, temporary advisor, or the Director of Graduate Studies. The grades of courses listed on the program of study must be greater than or equal to a 3.0.

Approval process

I. The student must obtain and fill out the PhD Post-MS Program of Study form.
II. The student must list all classes - past, present and future – that are to count toward the PhD, including transfer hours.
III. Seven months prior to graduation, the student must gather original signatures from all three committee members, and then submit the form to the Graduate Advisor.
IV. The Graduate Advisor will then input all the information from the paper form into the electronic records system via CIS.
V. The five committee members, the Director of Graduate Studies, and the Dean of the Graduate School will all have to electronically approve the program of study. Students can monitor this process by logging into CIS, locating the Graduation panel under their student information, then clicking on “Graduate Student Summary.” It is the responsibility of the student to monitor their online records and to secure the proper approvals in a timely manner.

Research Proposal

The second checkpoint is a dissertation research proposal defense, which is given within a year of passing the qualifying examination and at least 8 months prior to the dissertation defense. The proposal defense assesses the student’s research abilities and is administrated and scored by the student’s supervisory committee. Passing the proposal defense indicates that the student’s proposed dissertation research is approved by the committee and can commence.

Students are required to submit a written research proposal and a proposal defense summary to their supervisory committee, 2 weeks prior to the oral defense. The written research proposal must follow a standard format such as those suggested by NSF, DOE, NIH, or other funding agencies as appropriate, and thus must include a one-page project summary (that can be similar to the defense summary – see below) and research/project description and associated bibliography. The student may provide a short biosketch and a budget, if relevant. The research/project description must be 15 pages or less and include a time table. A helpful guide for writing the research proposal can be found on NSF’s website: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=GPG. The proposal defense summary is a succinct, one-page description of what your PhD research will accomplish. The Proposal Defense Summary requirements are outlined in IV (page 43).
Dissertation Defense and Final Oral Examination

The final checkpoint in the Ph.D. program is the dissertation defense, which is given at least 8 months after the research proposal and in the student’s last semester. This defense is open to the public and is an in-depth explanation of the student’s doctoral research. The defense is the final examination in the doctoral program. It can be broke down into three parts: a written exam (typically the submitted dissertation serves as the written component of the exam), a public oral exam, and a closed oral exam.

The dissertation manuscript serves as the written portion of the exam. The dissertation must:

- reflect an understanding of the current and past state of knowledge in the chosen research area through a literature review of the subject.
- clearly state the goals of the research and justify its value to the engineering and scientific community.
- demonstrate a fundamental and original contribution, which significantly advances engineering science in the chosen area of research.

A dissertation defense summary is required and must be submitted the committee 2 weeks prior to the oral defense (along with the complete dissertation manuscript). The dissertation defense summary is a succinct, one-page description of a student’s accomplishments and is accompanied by a second page that outlines deliverables achieved. The Dissertation Defense Summary requirements are outlined in IV (page 43).

Publication Requirement

PhD students are required to submit at least one manuscript to a committee-approved, peer-reviewed journal by the time of the defense. Good PhD research typically results in three or more peer-reviewed publications.

Written Dissertation

Contents, results, and conclusions associated with the student's doctoral research and written dissertation are presented by the student to the supervisory committee for examination and evaluation. The complete and formatted dissertation manuscript should be given to the committee at least two weeks prior to the defense. Please follow the dissertation guidelines outlined by the Graduate School.

Defense Format

The defense begins with the student’s presentation of the doctoral research. The student will be evaluated on presentation skills as well as content. Members of the audience may ask the student relevant questions. After the public question-and-answer session, the audience will be excused.

After the open portion of the exam, the closed oral exam begins. The committee may pursue additional discussion and questions with the student. The acceptability of the research effort, the content and conclusions of the dissertation, and the student's oral defense are considered along with other factors, as appropriate. The committee then dismisses the student and votes to determine whether the student (a) passes the exam, (b) passes the exam with modifications to the dissertation, or (c) fails the exam with or without an opportunity to repeat the examination. The chair then meets with the student to inform him/her of the committee’s decision, and the reasons for that decision.
Manuscript Corrections

The finish line for the Ph.D. degree is completing manuscript corrections. After successful completion of the dissertation defense, the student must complete any content corrections recommended by the committee.

1. Once the content is in order, the student must collect original signatures of all committee members on two copies of the Reading Approval Sheets (available on the Thesis Office’s website). Then the student must submit the approval sheets and one hard copy of the manuscript to the Department Chair for approval.

2. Next, the student must work with the Thesis Editor to correct the format of the manuscript (margins, font sizes, readability, etc). In order to receive the diploma in a given semester, the student must begin format corrections with the Editor by a certain deadline. The student must also finish corrections by the correct deadline. These deadlines are available on the Thesis Office’s website.

3. Dissertation must be approved by Thesis Editor within one semester of defense at the most.

4. Once format corrections are finished, the student must then work with the Thesis Office to submit their manuscript to ProQuest or USPACE for online viewing.

5. After each of these steps is completed, the student will be cleared for graduation. Please note that a student is not considered “graduated” for merely passing the defense. The dissertation must also successfully pass corrections and be published before a degree may be awarded.

Residency Requirement

At least one year of the doctoral program must be spent in full-time academic work at the University of Utah. This means that for two consecutive semesters, the student must be registered for 9 or more credit hours.

Time Limits

At the minimum, students must complete no fewer than three full years (six semesters) of approved graduate work, inclusive of work for the Masters degree. More time may be required. In truly exceptional cases, a shorter period of time in graduate work may be approved by the Dean of the Graduate School.

A maximum time of six years is allowed for completion of the Ph.D. degree for students who started the Ph.D. program following a Masters degree. If the student requires additional time, the student’s advisor must submit a letter to the Director of Graduate Studies and the Dean of the Graduate School requesting an extension with a plan for completing the program.
DOCTOR OF PHILOSOPHY, POST-B.S.

The Doctor of Philosophy degree is designed to give students in-depth study in a particular research emphasis. Compared to our master’s students, a larger percentage of doctorate students receive funding. Additionally, the funding they receive is typically in greater amounts than for the master’s. Doctorate students have more say in crafting their topics and designing their research. In the workforce, doctorate graduates earn more than graduates with only a master’s. They have the flexibility to choose a career in industry, research, or education.

Applicants for the Ph.D. program with a Bachelor of Science degree may be accepted directly into the Doctoral program without completion of a Master of Science degree or a Master of Engineering degree. These students are encouraged to pursue the milestone Master of Science (non-thesis) degree as part of their Ph.D. program.

Course Requirements (post B.S. degree)
- A minimum of 53 total credit hours.
- A minimum of 39 credit hours of approved graduate course work.
- A minimum of 24 credit hours in regular Mechanical Engineering graduate courses.
- A minimum of 9 credit hours in regular Mechanical Engineering courses at the 7000 level.
- A maximum of 6 credit hours of ME EN 6950 - Independent Study taken after the completion of the B.S. degree may be applied to the Ph.D. degree.
- Upper division course work in allied fields is allowed.
- A minimum of 14 credit hours for ME EN 7970 - Ph.D. Dissertation.

Additional Requirements
- Successful completion of the Ph.D. Qualifying Examination
- Successful completion of the Research Comprehensive Examination
- Successful completion of an approved research program representing at least 14 credit hours of ME EN 7970.
- Successful oral defense of the Doctoral dissertation before the supervisory committee.

Faculty Advisor
The student must select a permanent advisor by the end of the first semester of Ph.D. degree work. The advisor oversees the Ph.D. student’s program, gives recommendations for selecting courses and supervises the dissertation research. It is recommended that the advisor be a tenured/tenure-track faculty member of the Department.

Ph.D. Qualifying Examination
The first checkpoint in a doctorate student’s career is the Qualifying Exam. Students must pass this exam in order to be officially admitted to candidacy in the Ph.D. program. The exam is directed at testing students’ understanding and application of basic concepts and mastery of technical knowledge in different areas. The exam is administered near the end of the Fall and Spring semesters, and should be taken early in the student’s Ph.D. program. Please see the chapter, “Ph.D. Qualifying Exam Student Instructions” for full exam procedures.
Supervisory Committee

After successful passage of the qualifying exam, a five-faculty-member supervisory committee is selected. The chair of this committee is the student’s permanent advisor. The other members of the committee are selected by the committee chair in consultation with the student. The Graduate Committee may make recommendations regarding committee membership. A majority of the supervisory committee members must be faculty members from the Department. At least one member must be from outside the Department.

Program of Study

The program of study and thesis work is completed under the direction and approval of the supervisory committee. The committee chair (the student’s advisor) will assist the student in planning the program of study, and should encourage breadth by selection of one or more courses outside of the Department in areas such as basic science, statistics, and mathematics. Graduate courses should be selected after consultation with the student's permanent supervisory chair, temporary advisor, or the Director of Graduate Studies. The grades of courses listed on the program of study must be greater than or equal to a 3.0.

Approval process

- The student must obtain and fill out the PhD Post-BS Program of Study form.
- The student must list all classes - past, present and future – that are to count toward the PhD, including transfer hours.
- Seven months prior to graduation, the student must gather original signatures from all three committee members, and then submit the form to the Graduate Advisor.
- The Graduate Advisor will then input all the information from the paper form into the electronic records system via CIS.
- The five committee members, the Director, and the Dean of the Graduate School will all have to electronically approve the program of study. Students can monitor this process by logging into CIS, locating the Graduation panel under their student information, then clicking on “Graduate Student Summary.” It is the responsibility of the student to monitor their online records and to secure the proper approvals in a timely manner.

Milestone Master’s

Once the student has passed the Qualifying Exam, the student can also fill out paperwork to receive a Master of Science, non-thesis degree. The student forms a 3-member committee for the MSNT, and forms a program of study totaling 30 credit hours of coursework according to the MSNT requirements. The student then fills out and submits the following paperwork to the Graduate Advising Office:

- Request for Supervisory Committee
- Application for Admission to Candidacy (Program of Study form)
- Comprehensive Exam
- Report of the Final Exam

The qualifying exam is counted in place of the MSNT final exam. Once this paperwork has been submitted, the M.S. degree will be awarded the following semester.
Research Proposal

The second checkpoint is a dissertation research proposal defense, which is given within a year of passing the qualifying examination and at least 8 months prior to the dissertation defense. The proposal defense assesses the student’s research abilities and is administrated and scored by the student’s supervisory committee. Passing the proposal defense indicates that the student’s proposed dissertation research is approved by the committee and can commence.

Students are required to submit a written research proposal and a proposal defense summary to their supervisory committee, 2 weeks prior to the oral defense. The written research proposal must follow a standard format such as those suggested by NSF, DOE, NIH, or other funding agencies as appropriate, and thus must include a one-page project summary (that can be similar to the defense summary – see below) and research/project description and associated bibliography. The student may provide a short biosketch and a budget, if relevant. The research/project description must be 15 pages or less and include a time table. A helpful guide for writing the research proposal can be found on NSF’s website: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=GPG. The proposal defense summary is a succinct, one-page description of what your PhD research will accomplish. The Proposal Defense Summary requirements are outlined in IV (page 43).

Dissertation Defense and Final Oral Examination

The final checkpoint in the Ph.D. program is the dissertation defense, which is given at least 8 months after the research proposal and in the student’s last semester. This defense is open to the public and is an in-depth explanation of the student’s doctoral research. The defense is the final examination in the doctoral program. It can be broke down into three parts: a written exam, a public oral exam, and a closed oral exam.

The dissertation manuscript serves as the written portion of the exam. The dissertation must:

- reflect an understanding of the current and past state of knowledge in the chosen research area through a literature review of the subject.
- clearly state the goals of the research and justify its value to the engineering and scientific community.
- demonstrate a fundamental and original contribution, which significantly advances engineering science in the chosen area of research.

A dissertation defense summary is required and must be submitted the committee 2 weeks prior to the oral defense (along with the complete dissertation manuscript). The dissertation defense summary is a succinct, one-page description of a student’s accomplishments and is accompanied by a second page that outlines deliverables achieved. The Dissertation Defense Summary requirements are outlined in IV (page 43).

Publication Requirement

PhD students are required to submit at least one manuscript to a committee-approved, peer-reviewed journal by the time of the defense. Good PhD research typically results in three or more peer-reviewed publications.

Written Dissertation

Contents, results, and conclusions associated with the student's doctoral research and written dissertation are presented by the student to the supervisory committee for examination and evaluation. The complete and formatted dissertation manuscript should be given to the
committee at least two weeks prior to the defense. Please follow the dissertation guidelines outlined by the Graduate School.

Defense Format

The defense begins with the student’s presentation of the doctoral research. The student will be evaluated on presentation skills as well as content. Members of the audience may ask the student relevant questions. After the public question-and-answer session, the audience will be excused.

After the open portion of the exam, the closed oral exam begins. The committee may pursue additional discussion and questions with the student. The acceptability of the research effort, the content and conclusions of the dissertation, and the student's oral defense are considered along with other factors, as appropriate. The committee then dismisses the student and votes to determine whether the student (a) passes the exam, (b) passes the exam with modifications to the dissertation, or (c) fails the exam with or without an opportunity to repeat the examination. The chair then meets with the student to inform him/her of the committee’s decision, and the reasons for that decision.

Manuscript Corrections

The finish line for the Ph.D. degree is completing manuscript corrections. After successful completion of the dissertation defense, the student must complete any content corrections recommended by the committee.

1. Once the content is in order, the student must collect original signatures of all committee members on two copies of the Reading Approval Sheets (available on the Thesis Office’s website). Then the student must submit the approval sheets and one hard copy of the manuscript to the Department Chair for approval.

2. Next, the student must work with the Thesis Editor to correct the format of the manuscript (margins, font sizes, readability, etc). In order to receive the diploma in a given semester, the student must begin format corrections with the Editor by a certain deadline. The student must also finish corrections by the correct deadline. These deadlines are available on the Thesis Office’s website.

3. Dissertation must be approved by Thesis Editor within one semester of defense at the most.

4. Once format corrections are finished, the student must then work with the Thesis Office to submit their manuscript to ProQuest or USPACE for online viewing.

5. After each of these steps is completed, the student will be cleared for graduation. Please note that a student is not considered “graduated” for merely passing the defense. The dissertation must also successfully pass corrections and be published before a degree may be awarded.

Residency Requirement

At least one year of the doctoral program must be spent in full-time academic work at the University of Utah. This means that for two consecutive semesters, the student must be registered for 9 or more credit hours.

Time Limit

Students must complete no fewer than three full years (six semesters) of approved graduate work, inclusive of work for the Masters degree. More time may be required. In truly
exceptional cases, a shorter period of time in graduate work may be approved by the Dean of the Graduate School.

A maximum of eight years is allowed for completion of the Ph.D. degree for students who started the Ph.D. program following a Bachelor of Science degree. If the student requires additional time, the student’s advisor must submit a letter to the Director of Graduate Studies and to the Dean of the Graduate School requesting an extension with a plan for completing the program.
Section III: About the Ph.D. Qualifying Exam
1. Purpose of the Qualifying Exam

 1. To be officially considered as admitted to candidacy in the Ph.D. program, applicants must pass a qualifying exam. The exam is designed to:
 a. Evaluate a student’s capacity to perform outstanding research
 b. Test their oral communication skills and ability to “think on their feet”
 c. Evaluate the student’s fundamental knowledge in selected core areas of mechanical engineering
 d. Identify areas that need strengthening as they work towards their Ph.D.

 2. In preparing for and taking the qualifying exam, students will learn how to:
 a. Formulate a useful problem
 b. Understand prior work on their topic
 c. Review and apply core engineering knowledge towards the completion of research

2. Format Overview

 • The exam will consist of two parts: i) a research paper written and presented by the student and ii) an oral examination of the student’s knowledge in three areas pertinent to the student’s research. For scoring purposes (pass/fail), there are five parts to the qualifying exam – i) the research paper, ii) the research presentation and student’s answers pertaining to the presentation and the paper; iii) subject area 1, iv) subject area 2, and v) subject area 3. Each voting member of the examining committee will have a distinct vote (pass/fail) pertaining to these five parts of the exam.

 • When to take the exam: Students admitted with a master’s degree will take the exam during their second semester in the Ph.D. program at the latest. Students admitted to the Ph.D. program with a bachelor’s degree will take the exam during their third semester at the latest. In this case, summer does not count as a semester.

 • Extensions: Students may petition the Graduate Committee for an extension prior to taking the exam, if extenuating circumstances have left the student at an unfair disadvantage.

 • Retakes: Students will have two consecutive chances to take the exam. If a student does not pass the exam on the first chance, that student will have a second chance the next regular semester to pass. If that student does not pass the exam on the second try, the student will be dismissed from the Department’s doctoral program.

3. Week by Week Timeline

 • If a student does not meet recommended deadlines (items a, c, and d below), he or she could become greatly disadvantaged. If a student does not meet strong deadlines (items e and f below), that student will forfeit the entire exam.

 o Week 1: By the end of the first week of the semester, the student will submit to the Graduate Advisor either a Notification of Intent to Take the Qualifying Exam or a petition for extension.

 o Week 3: By the end of the third week, the Graduate Committee will have approved the student’s form and will assign professors to be on each student’s Exam Committee. The Graduate Committee will assign an exam date/time that does not conflict with the class schedules of the examiners and student. See Section 4, Item 5 for further detail.

 o Weeks 3-12: Between the third week and the 12th week, it is highly recommended that students meet with their advisor and Exam Committee to discuss study methods and topics, as well as content of the paper.
Week 10: By the end of the 10th week, students must have passed the Canvas plagiarism quiz. Any student who has not will automatically fail the qualifying exam. This will count as one of the student’s attempts.

Week 11: During the 11th week, students must submit their papers to Turnitin.com via the Canvas course.

- The Grad Committee representative on each qualifying exam committee will review each paper and Turnitin Report. If a paper is suspected of plagiarism, the entire exam committee will review it. If a paper is deemed to have been severely plagiarized, the entire qualifying exam is failed. This will count as one of the student’s attempts.
- Students must also send their committee a reminder of the date, time, and place of the exam.

Week 12: During the 12th week, exams will be held as scheduled by the Graduate Committee.

Week 13-15: At the next available faculty meeting following the exams, a summary of each exam will be presented for faculty review. In case of qualifying exam retakes, the faculty will also vote to pass or fail the student (based on the recommendations from the exam committee) and approval.

Week 16: By the end of the 16th week, the results of the qualifying exam (complete pass, conditional pass, partial pass with the requirement to pass the remaining areas by the next attempt, or complete fail) will be mailed out to the students.

4. Prior to the Exam: Detailed Procedures

I. Student Preparation: It is expected that prior to the examination semester, students will complete requisite coursework to achieve competency in the qualifying exam research and subject areas.

II. Notification of Intent: Students register for the exam each semester by submitting:
 - A form, available in the Graduate Advising Office and signed by the student’s advisor
 - Current unofficial transcript (including current class schedule and current cumulative GPA)
 - Title and abstract for the research paper (less than 200 words)
 - List of three subject areas to be evaluated. These areas should be listed in decreasing order of expertise.

III. Subject Areas: The three subject areas must come from Table 9 below. The areas must be significantly different from each other (i.e. “Advanced Controls” would not be approved in addition to “Controls”).
Table 9. Exam Subject Areas

<table>
<thead>
<tr>
<th>Engineering Topics (alphabetical)</th>
<th>Mathematics Topics (max. 1 allowed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>Calculus & Differential Equations</td>
</tr>
<tr>
<td>Robotics</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>Design</td>
<td>Numerical Methods</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Statistics &/or Experiment Design</td>
</tr>
<tr>
<td>Ergonomics and Safety</td>
<td></td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Materials Engineering</td>
<td></td>
</tr>
<tr>
<td>Strength of Materials</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>Biomechanics</td>
<td></td>
</tr>
<tr>
<td>Approved subject not on this list (max. 1 allowed)</td>
<td></td>
</tr>
</tbody>
</table>
a. Examiners are asked to submit the dates and times of vital, immovable events to the Graduate Committee to allow for accommodation for such events.
b. Professors might have to rearrange office hours or other student meetings, but since the Ph.D. program is so vital to this Department and since the exam period has been condensed to one week, it is expected that accommodations for exam commitments will be made.

5. Prior to the Exam: About the Research Paper

1. **Important:** The exam research paper is NOT a proposal defense and should not be treated as such. Do not encourage students to include content that might confuse the research paper with a proposal.

2. **Content:** The student’s research paper typically comprises a critical literature review related to their research and should meet the following specifications:
 a. Survey of the literature in the student’s research area
 b. Identify how existing research has or hasn’t addressed proposed research
 c. Communicate the motivation, intellectual merit, and background information (such as relevant equations, processes or theories) of the student’s research
 d. Explain how the literature will shape the direction of the student’s research
 e. Optional: Include preliminary results of research, if such results have been obtained already
 f. Compare the preliminary results, if applicable, to related literature

3. **Regardless of the topic, the paper should:**
 a. Follow a standard format, such as those used by ASME, IEEE, etc
 b. Be 6-10 pages in length
 c. Include 15-30 references and citations
 d. Be clear and concise
 e. Show depth of knowledge and ability to analyze and synthesize material

4. **Regardless of the topic, the paper should NOT:**
 a. Exceed 10 pages
 b. Plagiarize in any form to any extent. Please see Item 6 below for further detail.
 c. Contain grammatical errors to the extent that meaning is obscured
 d. Include content that is more appropriate for a proposal defense. The exam research paper is NOT a proposal defense and should not be treated as such.

5. **Plagiarism:** Plagiarism constitutes borrowing, referencing, or otherwise using - *without properly citing* – ideas, words, and/or phrasings from another source. Some examples (these are not all-encompassing; please see the U of U Student Handbook for further detail):
 a. Failing to indicate that portions of text were taken verbatim from another source. Such indication is correctly done by using proper citations and double quotation marks (“ ”).
 b. Including portions of text written by the student’s advisor, members of the student’s lab or anyone else but the student without properly attributing (see previous item).
 c. Including portions “edited” by others to the extent that the editors have “ghost written” the paper.

Plagiarism of any degree – even accidental or unintentional plagiarism – will result in automatic failure of the entire exam.
6. **Advisor Involvement:** Students may consult with faculty advisor on research topic and direction. Faculty should not edit papers, but may provide feedback to the student.

7. **Submission deadline:** The research paper must be submitted a minimum of 1 week prior to the scheduled date of the qualifying exam (during the 12th week of the semester).

6. **During the Exam: General Rules and Procedures**
 1. The exam is a closed format; no outside observers will be allowed.
 2. Before the exam begins, one of the three voting members will be designated as the committee chair.
 3. The exam will begin with the presentation of the research paper, followed by the oral examinations of the three knowledge areas. Detailed procedures for each part follow below.
 4. Examiners are free to interject with questions as they deem appropriate.
 5. General time limits will be as follows:
 a. Presentation of the paper: 15 minutes
 b. Questions related to the paper: 10 minutes
 c. Subject area 1: 25 minutes
 d. Subject area 2: 25 minutes
 e. Subject area 3: 25 minutes
 f. Committee discussion: 20 minutes
 g. The entire qualifying exam period should not exceed 2 hours.
 h. The Graduate Representative will monitor the time per area to ensure adherence to the 2 hour exam time.
 6. After the examination of the third subject area has concluded, the Exam Committee will ask the student to leave the room and the committee will discuss the performance of the student, at which point the advisor (if he/she is a member of the examining committee) can provide additional background information on behalf of the examined student.
 7. Once the discussion is complete, the student’s advisor (if he/she is a member of the examining committee) will leave the exam room so that final deliberation and voting by the three voting members of the committee can be completed.

7. **During the Exam: Paper/Presentation Rules and Procedures**
 1. The student’s presentation should demonstrate his or her ability to present information in front of a group and to communicate clearly even to those outside of the student’s research area.
 2. Students who utilize a PowerPoint presentation are required to provide copies of the PowerPoint slide handouts for each exam committee member
 3. Question Format:
 a. Questions should be designed to establish a student’s understanding of the essential fundamentals in an area, capability of independent thought, and academic potential for admission to the Ph.D. program
 b. Questions should also test a student’s ability to synthesize and respond to open-ended problems.
 c. Examples of Appropriate Questions:
 i. Questions from other areas related to the student’s research
 ii. Questions asked for the sole purpose of evaluating the student’s ability to approach a problem.
iii. Questions that connect the research paper to one or more of the student’s knowledge areas

d. Examples of Inappropriate Questions:
 i. Asking about the validity of the student’s research methods
 ii. Asking about broader implications of preliminary results
 iii. Any questions that would routinely be asked during a proposal defense.
 The exam research paper and presentation DO NOT constitute a proposal defense and should not be treated as such.

4. Interpreters may not be used in the Ph.D. Qualifying Exam except in the case of identified disabilities. The University of Utah seeks to provide equal access to its programs, services, and activities for people with disabilities. If you need accommodations for the qualifying exam, reasonable prior notice needs to be given to the graduate committee (at the time the notification of intent form is submitted to the Graduate Advisor) so that the graduate committee can make arrangements for accommodations. International students are expected to possess verbal and written English language skills equivalent to TOEFL scores greater than 590 (paper-based) or 96 (internet-based).

8. During the Exam: Subject Areas Rules and Procedures
 1. The subject areas will be examined one at time.
 2. Question format:
 a. Questions will be asked to test the student’s fundamental understanding of, and ability to apply, relevant knowledge.
 b. Students may be asked to work out answers on the white/chalk board.
 c. The committee member in each designated area is responsible to make sure that adequate questioning in that subject area has been conducted.
 d. Other committee members may ask questions outside of their assigned area.
 e. An examiner may decide that adequate knowledge in that subject area has been demonstrated in the student’s paper/presentation. In such a case, the examiner may yield as much of his/her subject area time as he/she deems appropriate.
 3. Question difficulty:
 a. The level of difficulty will be at the advanced Bachelor of Science degree and possibly Master of Science degree levels (equivalent to 5000- and 6000-level courses at the University of Utah).
 b. Questions beyond this level of difficulty should not be asked.

9. After the Exam: Scoring
 1. Each voting member of the Exam Committee will cast a vote of pass or fail on each of the 5 parts of the exam: three subject areas, research paper, and oral presentation. Each examiner will also complete an examiner summary sheet that summarizes the student’s performance in their exam area (and other areas, in case they were involved in some manner). The majority vote will determine a pass or fail in each of the five parts of the exam. Students have a maximum of 2 attempts to pass all five parts of the exam in order to complete the PhD qualifying exam. The student will have to pass all 5 parts of the exam in order to pass the qualifying exam and thereby be admitted to the PhD program.

 The Exam Committee is not required to inform a student right away of the exam results. If additional time is needed to determine result, then the committee may withhold the results until they come to a clear decision.
a. **Scoring example:**

<table>
<thead>
<tr>
<th></th>
<th>(1) Controls</th>
<th>(2) Robotics</th>
<th>(3) Linear Algebra</th>
<th>(4) Paper</th>
<th>(5) Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examiner 1</td>
<td>Pass</td>
<td>Fail</td>
<td>Pass</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Examiner 2</td>
<td>Pass</td>
<td>Fail</td>
<td>Pass</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Examiner 3</td>
<td>Fail</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Majority Vote Per Subject Area</td>
<td>Pass</td>
<td>Fail</td>
<td>Pass</td>
<td>Pass</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Overall Exam result: “Partial pass” with a requirement to retake the Robotics subject area and redo the paper presentation and pass these areas by the second (and last) attempt the subsequent semester.

2. The overall exam results will include one of the following:
 a. Pass: Passed all areas of the exam outright.
 b. Conditional pass: Passed with a requirement to take additional coursework, etc.
 c. Partial pass: Passed some areas of the exam, but required to retake the failed portion(s) of the exam in the subsequent semester.
 d. Fail: Significant weaknesses across all areas of the exam. Students will have to retake all portions of the exam in a second attempt in the subsequent semester.

3. The committee chair will tally the exam results and write a brief statement providing the majority votes, a summary of the student’s performance throughout the exam, and the committee’s decision concerning pass, conditional pass, partial pass or fail.
 a. In the case of a conditional pass, the perceived weaknesses of the student and the required conditions to obtain a full pass must be outlined.
 b. This summary is submitted to the Graduate Advisor no later than one week following the exam.

4. Exam retakes:
 a. The same rules will apply and students will need a majority ‘pass’ vote in order to pass retaken portions of the exam. At the end of a retake, the committee will make an overall recommendation to the faculty on whether to pass or fail a student. This recommendation will be discussed at the faculty meeting designated for this purpose. In case a student has not passed all areas of the exam at the end of the retake, the entire faculty will vote to pass or fail the student based on the recommendations of the committee and the discussion at the faculty meeting.

10. **After the Exam: The Faculty Meeting**
1. After the committee chair has submitted the score sheets and summary, the Graduate Advisor will compile the scores and recommendations for presentation to the faculty.
2. At the first regularly scheduled faculty meeting following the exams, the outcomes will be presented by the Chair of the Graduate Committee with a brief opportunity for the faculty to ask for any necessary clarifications.
 2.1 Barring any objections, the faculty will move directly to a vote *only* on the results of students who have retaken the exam based on the committee’s recommendations of pass, conditional pass, partial pass, or fail.
 2.2 A simple majority vote is required for approval.
3 In the case of conditional passes:
 3.1 The conditions must be met in a timely manner, not to exceed 1 year from the exam date.
 3.2 When the conditions have been met, with the faculty advisor’s endorsement, the student will request a change in status from “Conditional Pass” to “Pass.” The Chair of the Graduate Committee will act on the request.
4 The student’s faculty advisor can appeal the Exam Committee’s recommendations for exam retakes according to the following process:
 4.1 The student must have passed three or more parts of the exam. No appeals are allowed if the student has passed only two or fewer parts of the exam at the retake (second and last attempt).
 4.2 After the pass/fail votes are read at the faculty meeting, the student’s advisor will be allowed to address the faculty. The advisor will state what recommendations he or she feels appropriate, then provide evidence to support this action.
 4.3 A two-thirds majority from the faculty will be required to over-rule the recommendations of the examining committee.
5 After faculty approval has been obtained, the Graduate Advisor will prepare letters containing final exam results (including explanation of conditions, if applicable) to be mailed to the students no later than the end of the 16th week of the semester.
IV. PhD Proposal Defense and Dissertation Defense Summaries
• **Proposal Defense and Dissertation Defense Summary Requirements**
 o The proposal defense and dissertation defense summaries are required effective spring 2012. All Ph.D. candidates will be required to submit the following documents with their research manuscripts according to the timeline in section 2.
 o Refer to the following appendices for requirements and samples:
 o Proposal Defense Summary Requirements
 1.2 Proposal Defense Summary Sample
 1.3 Dissertation Defense Summary Requirements
 1.4 Dissertation Defense Summary Sample
 1.5 Dissertation Defense – Research Deliverables Sample

• **Ph.D. Timeline**
 o **Milestone 1: Ph.D. Qualifying Exam**
 ▪ Student with Master’s Degree: Take exam during the 2nd semester of Ph.D. program
 ▪ Student with Bachelor’s Degree: Take exam during the 3rd semester of Ph.D. program
 ▪ [Ph.D. Qualifying Exam Instructions](#)
 o **Milestone 2: Proposal Defense and Summary**
 ▪ The proposal defense is to be completed after the passing of the Ph.D. Qualifying Exam.
 ▪ The proposal defense is comprised of 3 parts: a written proposal, a public oral presentation and a closed oral defense of the proposal.
 ▪ The student is required to submit a written research proposal and proposal summary to the supervisory committee **2 weeks prior to the proposal defense**.
 • Written research proposal requirements:
 o Must follow standard format such as those suggested by NSF, DOE, NIH, or other funding agencies as appropriate.
 o Must include a one page summary. May include a budget, two-page bio-sketch.
 o Project description must be 15 pages or less and include a time table.
 o [Guide for writing the proposal](#)
 • The proposal summary requirements (see appendices 2.1 – 2.2):
 o Provide a succinct, one-page description of what your Ph.D. research will accomplish.
 o Your supervisory committee will have a clear understanding of your overall plan and approach after reading this one-page summary.
 o To be submitted with the written research proposal to the supervisory committee **2 weeks prior to the proposal defense**. If the committee suggests changes, a revised and approved version must be submitted to the Graduate Advising Office within **2 weeks of the proposal defense date**.
Milestone 3: Dissertation Defense and Summary

- There must be a minimum of 8 months between the proposal defense and the dissertation defense.
- The student is required to submit a dissertation manuscript and dissertation summary to the supervisory committee 2 weeks prior to the dissertation defense.
 - Manuscript requirements:
 - See the Thesis Office Requirements
 - The dissertation defense summary requirements (see appendices 2.3 – 2.5):
 - Provide a succinct, one-page description of what you have accomplished through your research. A second page should outline deliverables achieved.
 - Your supervisory committee will have a clear understanding of the contributions you have made.
 - To be submitted with the manuscript to the supervisory committee 2 weeks prior to the dissertation defense.
- The student must submit at least one paper (manuscript) to a committee-approved, peer-reviewed journal by the time of the defense.

Milestone 4: Manuscript Corrections

- After completion of the dissertation defense, the student must complete any content recommendations by the supervisory committee.
- Once content is in order, the student must collect original signatures of all committee members on two copies of the Reading Approval Sheets. Students then submit approval sheet and one hard copy of the manuscript to the Department Chair for approval.
- Student must work with Thesis Editor to correct format of the manuscript.
- Dissertation must be approved by Thesis Editor within one semester of the defense at most.
Appendix 2.1: Proposal Defense Summary Requirements

Title

Student Name

The purpose of this document is to provide a succinct, one-page description of what your Ph.D. research will accomplish. Your committee, regardless of their background, should have a clear understanding of your overall plan and approach after reading this page. It is similar to summaries written for proposals submitted to NSF (Project Summary), NIH (Specific Aims), and other agencies. Use a standard font type and size (not less than 11 pt), with margins of no less than 0.5 inches, and include no figures. In the first paragraph, provide a descriptive, succinct statement of the problem or application your research will address. This should include the background material necessary to frame your problem in a general context so that readers who are not experts in the field can see how this work will be a significant contribution. Once the problem has been defined, state your overall hypothesis or objective and give a brief overview of your approach to addressing the problem. This approach should take the form of approximately three sub-objectives or specific aims, each of which you might anticipate becoming a published manuscript as the work progresses. You will provide more detailed descriptions of each of these aims in the following paragraphs. It is recommended that your summary utilize the format shown in this document and sample 1.2.

Objective 1: Statement of first objective. If appropriate, statement of hypothesis / research question that the objective will test / answer. In this paragraph, provide a brief description of your first sub-objective or specific aim. You may need to provide a little more background for each objective, including any progress you’ve been able to make to-date, but the focus should be on methodology and the logic your approach will apply to address the question. Clearly describe the approach you plan to follow. It is likely that facets of the approach will change as you continue your work, but the current plan should be logical and complete.

Objective 2: Statement of second objective. Hypothesis / question. Description of approach for Objective 2.

Objective 3: Statement of third objective. Hypothesis / question. Description of approach for Objective 3.

In a final paragraph, summarize the “intellectual merit” and “broader impacts” (see NSF definitions) of your proposed work. It may also be useful to briefly describe how each of the objectives or aims will work together to address the stated problem.

Following the proposal presentation and discussion, it may be necessary to adjust the Proposal Summary to reflect expectations agreed upon by the student and committee members. The final version should be signed by each member of the committee and filed with the Graduate Advisor.

Advisor (dated) Member 2 Member 3 Member 4 Member 5
Proposal Defense Summary: A New Approach for Head Protection in Sports

Jane A. Student

Traumatic brain injury (TBI) is a devastating health problem worldwide. Many of these injuries occur during sporting events such as American football. In many cases, helmets are effective at reducing impact severity by limiting skull deformation and reducing peak acceleration (by lengthening impact duration). Unfortunately, most impacts also include angular acceleration components that, even with helmet use, exceed the tolerance level of underlying brain tissue. Recent work in our laboratory has demonstrated that interactions between magnetic fields may be used to limit motion between two bodies, with specific capability for limiting impact forces. The overall objective of this project is to develop and implement a new head protection system for American football that relies on this magnetic field technology. This objective will be accomplished through the three specific aims outlined below.

Aim 1: Develop a helmet liner that effectively reduces impact forces between two helmets. We hypothesize that the advanced material we’ve developed will reduce helmet impact forces by 50% compared to helmet impacts without the liner. Work in our lab has shown that … In order to further this work, we will alter the computational model to predict the outcome of experiments to be conducted using a drop tower. Two helmets will …

Aim 2: …

Aim 3: …

Accomplishment of this work will advance understanding of system control through magnetic field interactions … This work will vastly improve the safety of American football, particularly with respect to head and neck injuries. Using this new technology, …
Appendix 2.3: Dissertation Defense Summary Requirements

The purpose of this document is to provide a succinct, one-page description of what you have accomplished through your research. From this document, your committee should have a clear understanding of the contributions you have made. As in the Proposal Summary, provide a clear statement of the problem you will address, along with your overall objective or hypothesis. It may be appropriate to use the exact text of the Proposal Summary; it should, at least, look similar in format. This introductory paragraph should be followed by descriptions of what was accomplished with respect to each of the specific objectives. You should also note the status of any manuscripts or publications associated with each. The final paragraph should, as in the Proposal Summary, describe the contributions and intellectual merit of your overall work. The overall document will likely be very similar to what was included in the Proposal Summary, except that the focus is on what you have accomplished rather than on what you plan to accomplish.

Along with the summary, a separate page should be attached specifically listing research deliverables resulting from your work, including publications, abstracts, presentations, patents, etc. Include any pending deliverables, along with their status.
Dissertation Defense Summary: A New Approach for Head Protection in Sports

Jane A. Student

Traumatic brain injury (TBI) is a devastating health problem worldwide. Many of these injuries occur during sporting events such as American football. In many cases, helmets are effective at reducing impact severity by limiting skull deformation and reducing peak acceleration (by lengthening impact duration). Unfortunately, most impacts also include angular acceleration components that, even with helmet use, exceed the tolerance level of underlying brain tissue. Recent work in our laboratory has demonstrated that interactions between magnetic fields may be used to limit motion between two bodies, with specific capability for limiting impact forces. The overall objective of this project is to develop and implement a new head protection system for American football that relies on this magnetic field technology. This objective will be accomplished through the three specific aims outlined below.

Aim 1: Develop a helmet liner that effectively reduces impact forces between two helmets. We hypothesize that the advanced material we’ve developed will reduce helmet impact forces by 50% compared to helmet impacts without the liner. Work in our lab has shown that … In order to further this work, we altered the computational model to predict the outcome of experiments conducted using a drop tower. Results showed … This work was published in the Journal of Amazing Magnetic Stuff in January of 2012.

Aim 2: …

Aim 3: …

This work has developed a more sophisticated understanding of the complex interactions between magnetic fields and materials. The improved computational model and developed helmet liner … Findings from this work are already being applied to improve the safety of American football, particularly with respect to head and neck injuries. Using this new technology, …
Appendix 2.5: Dissertation Defense – Research Deliverables

Journal Publications
Student, J. A., … (accepted for publication but not yet assigned to an issue)
Student, J. A., … (under review)

Conference Papers

Abstracts

Talks
Section IV: Student Benefits
FINANCIAL SUPPORT

Financial support for graduate students comes primarily from one of three separate sources: Research Assistantships (RA), Teaching Assistantships (TA), and fellowships. Additional support is provided through the Tuition Benefit Program (TBP).

Research Assistantships

RA positions are available to students working on grant-funded research programs. Awards are made directly by the faculty involved in the research. RA positions are considered half-time (20 hrs/week) positions. Partial RA positions may be awarded by faculty with a corresponding decrease in hourly expectations. The amount of the RA stipend is determined by the funding faculty member. Availability of research funds varies from semester to semester and new graduate students are strongly encouraged to discuss potential research projects with members of the faculty involved in research consistent with the student’s interests.

Teaching Assistantships

TA assignments are generally made by faculty members teaching courses that have TA positions assigned to them. Annually, the Department retains several full-year TA positions for new students entering the program.

Duties

TAs may run laboratory sessions, give classroom lectures, hold office hours, and be involved in grading. The Department classifies classroom assistant positions into three categories:

- **Lab TAs** are typically responsible for all aspects of laboratory sections associated with certain undergraduate courses. Duties may include the set up of experiments, lectures to undergraduate students on particular experiments, supervising undergraduate students during the data acquisition phase of experiments, and grading lab reports.
- **Course TAs** typically assist with course instruction. Duties may include conducting problem sessions, occasional lecturing, and grading of student homework and projects.
- **Graders** have limited interaction with undergraduate students and are primarily responsible for grading homework.

Stipend amount

Expected work load and stipend information for each type of TA position is given in Table 10.

Table 10. TA and Grader Stipend and Work Level

<table>
<thead>
<tr>
<th>Title</th>
<th>Stipend 2011-2012 ($/semester)</th>
<th>Maximum work load (hr/week)</th>
<th>Student Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab TA</td>
<td>6,555</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>Course TA</td>
<td>3,277</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>Grader</td>
<td>1,710</td>
<td>7</td>
<td>No</td>
</tr>
</tbody>
</table>
International students and TA positions

In order to qualify for a TA position, international students must attend the International Teaching Assistant (ITA) workshop. The Graduate School requires all non-native English speaking graduate students to be cleared by the ITA Program in order to be eligible for a tuition benefit for teaching assistantships. Screening for oral English proficiency is done once a year, and a pre-semester workshop is held each August to prepare ITAs for their teaching assignments. On-going training and support is offered throughout the academic year in the form of graduate-level English classes, one-on-one and group tutorials, classroom observations with follow-up consultations, mid-semester student evaluations, and seminars on topics of interest to ITAs.

Summer teaching positions

Several instructor positions are available each summer semester for advanced Ph.D. students. The graduate student/instructor is given full responsibility for an undergraduate course, including lecture preparation and delivery, test creation and grading, student advising on course material, and all course administration. The graduate student/instructor is provided a mentor from the regular faculty who provides advice and guidance on all aspects of course management. These positions provide the opportunity for Ph.D. students interested in an academic career to gain experience in teaching. Remuneration is based on the class level and number of students registered for the class.

Fellowships

The Graduate School has fellowships that are available to graduate students on a competitive basis. Complete information regarding these fellowships can be found on the Graduate School web page (http://www.gradschool.utah.edu/). Limited information on the Graduate School fellowships is given below.

University Graduate Fellowship

- Approximately 18 awards available each year.
- Requirements: Applicants must:
 - Be a Ph.D. student.
 - Demonstrate excellence in their research and academics.
 - Have passed the qualifying exam prior to application
- Applications are due in early February.
- Award amount: $10,000 + tuition waiver.

The College of Engineering also has a number of fellowships available for graduate students. These fellowships are awarded on a competitive basis and applications are generally required early in the spring semester.

Wayne Brown Fellowship

- Approximately 10 awards made each year.
- Applicants must be a new Ph.D. student in the College of Engineering
- Application materials include a completed application to the Department, a statement of goals, and three letters of recommendation.
- Applications are due to the Department by January 15.
- Award amount: $20,000. + tuition waiver.
Campbell Fellowship

- Awarded to new graduate students in Mechanical Engineering and Bioengineering.
- Applicants must be a native of Utah or demonstrate strong Utah ties.
- All other application materials are the same as the Wayne Brown Fellowship.
- Award amount: $11,000. + tuition waiver.

Tuition Benefit Program

TBP provides tuition waivers to graduate students who are receiving a minimum amount of funding through assistantships and/or fellowships. All students receiving a tuition benefit must meet minimum financial support requirements paid through the University of Utah for each semester that a benefit is received. Minimum support levels for the 2013-2014 academic year are shown in Table 11:

Table 11. Minimum Support Levels for TBP

<table>
<thead>
<tr>
<th>Minimum Stipend Amount</th>
<th>Size of Tuition Reduction</th>
<th>Number of hours per week working</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6,500</td>
<td>100% tuition waived</td>
<td>20 hours</td>
</tr>
<tr>
<td>$4,875</td>
<td>75%</td>
<td>10 hours</td>
</tr>
<tr>
<td>$3,250</td>
<td>50%</td>
<td>5-7 hours</td>
</tr>
</tbody>
</table>

No tuition benefit is granted to students receiving less than $3,250 of support for the semester. The required minimum support level is annually indexed to general salary increases to prevent gradual erosion of established graduate student salaries and stipends. Tuition Benefit does not cover differential tuition, undergraduate tuition, or tuition for audited classes. Further information on the Tuition Benefit Program may be found at the Graduate School website (http://www.gradschool.utah.edu/).

How to participate

1. Students meeting one of the minimum stipend amounts in Table 11 must fill out a Tuition Benefit Enrollment form.
2. The form is due to the Graduate Advising Office during the first week of the semester. A new form must be submitted every semester.
3. Students must then check with Sheila Olson to verify that they are on the payroll for the correct stipend amount. First-time employees may have to fill out new hire paperwork.
4. After the census deadline of each semester, students need to return to the Graduate Advising Office to sign a contract stating that they understand the TBP and accept the way the waiver was applied to their tuition. Failing to complete this step can result in loss of waiver and a retroactive tuition charge.
GRADUATE STUDENT HEALTH INSURANCE

The university also provides for health insurance for graduate students via two plans: the Subsidized Plan and the Voluntary (Unsubsidized) Plan. Enrollment is not compulsory, merely available to those who are eligible and wish to use this benefit. Further information on the insurance plans is available at www.gradschool.utah.edu/index.php under the Fellowships and Benefits menu item.

Subsidized Health Insurance

Full-time RAs and TAs (20 hr per week assignment) are eligible to enroll in subsidized student health insurance, which provides an 80% subsidy of the annual premium for a basic student accident and sickness insurance plan offered by the University of Utah.

The basic plan has a maximum benefit per person per policy year of $50,000. The plan allows students to buy-up to increase their coverage to $250,000 maximum benefit per person per policy year and to add a spouse and/or children at the student’s own expense.

How it works

1. Eligible RAs and TAs enroll in the health insurance when they turn in their Tuition Benefit Enrollment form.
2. Students desiring to add family members or to increase coverage need to fill out additional paperwork in the Graduate Advising Office.
3. The Graduate School will pay 80% of the premium for basic single-student coverage at the time of enrollment.
4. The student’s portion (20%) is paid by the student in Income Accounting, 10% in the fall, 10% in the spring.
5. Students (and family add-ons) are covered for one full calendar year, typically from August to August.

Unsubsidized Health Insurance

The same level of coverage available to RAs and TAs is also available to all graduate students through the Voluntary Health Insurance Plan. This health insurance is unsubsidized, meaning students must pay the entire premium themselves. Students wishing to enroll must do so online at http://www.gmsouthwest.com/.
Section V: Index of Policies
IMPORTANT POLICIES

The policies below are a selection of procedures and expected conduct for earning a graduate degree in Mechanical Engineering. The policies listed are not meant to be an exhaustive list. Other policies (including, but not limited to, the Graduate School, the Registrar’s Office, and the University at large) must also be adhered to, but are not necessarily detailed herein.

Amending the Program of Study

Modifications to the program of study are implemented by means of a memorandum signed by the chair of the supervisory committee and submitted to the Graduate Advising Office. Memos should state which classes are involved and whether they should be added or removed. For all students except M.EN. students, an email from the committee chair can count as a memo. Instead of a memo, M.EN. students must submit an Amendment to Planned Program of Study form to register changes in their program of study.

Changing Degree Programs

All master’s level students are expected to declare a degree program (thesis or non-thesis) by their second semester of graduate study. Students wishing to change their degree program must petition the Director of Graduate Studies by filling out and submitting a Change of Degree Program form. The chair of the supervisory committee must sign this form before it is submitted.

The Director of Graduate Studies will either accept or deny the petition. If the petition is denied, the student may appeal the decision to the entire Graduate Committee for a vote. Petitions are due no later than two weeks preceding the semester for which the change is to be affected.

Direct Advancement to the Ph.D.

Students completing a master’s degree may continue their studies directly into the Ph.D. degree with the support of their supervisory committee. Change in classification from a master’s to a Ph.D. student will not be granted before successful defense of the master’s thesis, or, in the case of the M.S. (non-thesis) degree, successful completion of the comprehensive exam. Such students should also fill out and submit the Change of Degree Program form as described above.

Charges

Nonresident tuition is not imposed on any student (including international students) whose total registration includes only course numbers in the ranges 6970-6989 and 7970-7989 in a given semester. These classes include master’s thesis, doctoral dissertation, faculty consultation and continuing registration.

Corrections Semester

Proficient graduate students typically finish manuscript corrections with the University Thesis Editor within four weeks of their defense. Thus, taking an entire semester to work on corrections is typically unnecessary and is discouraged by the Department. However, should a longer period of time be necessary for a student to finish corrections, a corrections semester can be taken.

Course Grades

The grade point average for all courses used to satisfy degree requirements must be 3.00 or better, and no course that was graded below “B-” can be counted as credit towards the degree.
Independent study, thesis, project, and dissertation hours are graded CR/NC in the Department. ‘T’ grades must be changed to CR/NC as quickly as possible.

If a professor does not turn in a grade by the grading deadline, the grade will default to ‘EU.’ ‘EU’ means “unofficial withdrawal,” i.e., no work was done by the student and/or no grade was recorded by the professor. EU grades are factored into the GPA as a failing grade.

Students need to monitor their grades closely via CIS and notify their professors of any T or EU grades. Professors will need to use appropriate forms to change the grade. Students cannot graduate with any EUs or Ts, even if the ungraded class is not being used toward a degree.

Course Level

Graduate students are required to takes courses offered simultaneously at 5000/6000 levels at the 6000 level. Counting any 5000 level courses towards the degree requires approval by the supervisory committee and formal petition to the Graduate Committee. Graduate course work in allied fields is allowed. A class is considered graduate-level according to that department’s policies. Thus, the Math Department considers some 5000-level math classes to be graduate-level, and they will be counted as such in our Department. Allied fields are typically considered those from engineering, science, and mathematics. Classes in English as a Second Language (ESL) are not considered to be from an allied field. Courses taken at the University of Utah at the 5000 level may not be retaken at the 6000 level for credit.

Coursework

Courses are approved for a degree first by the student’s supervisory committee, then by the Director of Graduate Studies, and finally by the Dean of the Graduate School. Classes should be chosen in conjunction with a student’s faculty advisor. An advisor may require a student to take a class that will not count toward the degree (such as an undergraduate class or a class not from an allied field). This is the advisor’s prerogative.

Degree Completion

All graduate program forms must be submitted to the Graduate Advising Office no later than one semester prior to graduation. Graduation is initiated by the student by filling out the Application for Graduation form and submitting it to the Graduation Office by the posted deadlines.

Degrees will not be awarded until:
1. All grades have been posted
2. There are no T or EU grades
3. The culmination event has occurred (final exam for MSNT, successful passing of the defense for all others)
4. All manuscript corrections have been made to the satisfaction of the supervisory committee and the Thesis Editor (MST and Ph.D. only)
5. All paperwork has been submitted and approved

Department Mailing List

All important Department communications are sent via email to the graduate listserv megrads@mech.utah.edu. All Umail addresses are automatically added to the listserv. To add an additional email address, please contact Jason Smith (jasmith@eng.utah.edu).

It is the student’s responsibility to check, read and understand the email messages sent out. Staff are not responsible for any consequences incurred due to negligence on the student’s part.
Exceptions
Any exceptions to these guidelines must be approved by the Department Graduate Committee through a formal petition.

Full-time Status
Graduate students are considered full time if
1. they are registered for nine or more credit hours, OR
2. after residency requirements have been met (two consecutive semesters of nine hours or more) they are registered for three credit hours of courses, at least one credit hour of which must be in the range of 6970-6989 or 7970-7989.

Leave of Absence
A leave of absence must be requested any time a student plans on not registering for a fall or spring semester. Leaves are requested by filling out a Leave of Absence Form. The student and his or her faculty advisor both need to sign the form. The form must be submitted to the Graduate Advising Office during the semester for which the leave is to take place. Leaves up to one year at a time may be requested. Without a formal leave of absence, the student’s graduate level status is canceled, and re-application to the program and payment of all applicable fees is required.

Maximum Hours
No student for a graduate degree is permitted to register for more than sixteen (16) hours in any single semester. Exceptions to this policy must be approved by the Director of Graduate Studies and the Dean of the Graduate School.

Minimum Continuous Registration
All graduate students must maintain continuous registration from the time of formal admission as a graduate student through completion of all requirements for the degree they are seeking, unless granted an official leave of absence by the Graduate School. This means a student must be enrolled at the University every fall and spring semester. Continuous registration requirements do not apply during the summer term.

Students can maintain minimum registration by registering and paying normal tuition and fees for at least 1 credit hour per semester of regular courses, research hours, or faculty consultation hours unless more credits are required to fulfill other policies set forth by the Graduate School, the tuition benefit program, requirements for international students, or Financial and Business Services (see links below)

Graduate School Catalog: https://gradschool.utah.edu/catalog/index.php
Tuition Benefit Guidelines: https://gradschool.utah.edu/tbp/guidelines.php

REGISTRATION REQUIREMENTS
Students participating in the TBP must be full-time, matriculated graduate students in good standing, cumulative GPA 3.0 (Law School, 2.0). Students on academic probation are not eligible for a Graduate School tuition benefit. TBP full-time student status means registration for at least nine credit hours throughout the semester. This provision does not affect full-time definitions or requirements currently employed for the purpose of loan repayment, student insurance, or other reporting requirements. TBP covers nine graduate credit hours to a maximum of 12 credit hours, except for RAs
whose tuition benefit is a minimum of nine and a maximum of 11 credit hours in Fall and Spring semesters and three credit hours in Summer semester. For RAs who have exceeded 84 accumulated credit hours, resident (in-state) tuition only is included in the TBP. This condition will be implemented in the semester when cumulative registration exceeds 84 credit hours as a University of Utah graduate student. Undergraduate, contract, and/or audited courses count toward the required minimum nine credit hours but do not qualify for a tuition benefit. A student registered for fewer than nine credit hours may make up the difference by registering for 6970, 6980, 7970, 7980, or other appropriate graduate credit. Students may register for a maximum 16 semester hours but are responsible for tuition for hours exceeding 12 credits. Students adding and/or dropping courses after the semester's published add/drop deadlines are responsible for any and all charges incurred, including withdrawals. If registration falls below nine credit hours at any time during the semester, a student becomes ineligible for TBP participation and will be billed the full tuition for that semester.

3. International Center Guidelines;
 http://internationalcenter.utah.edu/students/immigration-status/maintaining-status.php

 Graduate Students
 Must register for a minimum of 9 credit hours per semester.
 — or —

 After the applicable residency requirement has been met, students must be registered for 3 credit hours of courses, of which at least one credit hour must be in the range of 6970 – 6989, 7970 – 7989, or Pharmacology and Toxicology, 7920.

 F-1 students must take the minimum credits each semester except during vacation semester and final semester. Please note that not all programs and degree tracks offered by the University of Utah meet the minimum credit requirement. Because you have to meet the minimum requirement of full-time hours each semester except during the vacation and final semesters, certain programs offered on campus and certain employment opportunities outside of campus are incompatible with the F-1 student regulations.

4. FICA Tax Guidelines;

 Graduate students must be: enrolled and registered for 3 or more credit hours in the current semester at the University of Utah AND employed at the University of Utah as a part-time employee assigned to work less than 30 hours per week in a position not eligible for benefits. (Total FTW can’t be over .74)
 If a student works at the University of Utah during the summer semester, s/he must be enrolled and registered at the University of Utah as a student for the above stated credit hours during the summer semester in order to qualify for Student-Employee FICA exclusion.

 Doctoral students not using University facilities or faculty time should register for
Continuing Registration (MEEN 7990) to fulfill this requirement. Please note that MEEN 7990 does not fulfill full-time status and graduate degree requirements.

If a graduate student does not maintain continuous registration, the Registrar's Office classifies the student as inactive and the student’s graduate status is cancelled. In this case, students are required to reapply for admission, and to pay all relevant application fees in order to continue their studies.

Non-matriculated Students

Students who do not qualify for admission to The Graduate School or non-degree-seeking students may enroll in graduate-level classes on a non-matriculated basis. “Non-matriculated” means a student is simply taking classes, but not actively seeking a degree at that time. A student might open a non-matriculated career in order to catch up on undergraduate prerequisites, to take some graduate-level courses in order to improve their application for admission, or to get started on their graduate courses while waiting to finish their application for admission.

Requirements for a Non-Matriculated Status

1. Applicants must be U.S. citizens with a bachelor’s degree. International students on visas are not eligible for non-matriculated status.
2. Applications for non-matriculated status are processed solely through the Admissions Office. Applications must be submitted by the posted deadlines.
3. Up to nine credit hours of non-matriculated credit may be applied to a graduate degree.
 a. Such credits must be graduate-level and be graded with a B- or better.
 b. Decisions on accepting course credit are made by the student’s supervisory committee once the student has matriculated.
4. When such students want to be considered for matriculated graduate status, they must apply formally through the Admissions Office and College of Engineering, as previously outlined.
5. Grades received during non-matriculated status do not guarantee admission into a graduate program.

Registering for a Class as a Non-Matriculated Student

1. The student must open a non-matriculated career by filling out the appropriate paperwork with the Admissions Office.
2. Once the career is open and active, a student may begin registering themselves for classes through CIS.
3. Some courses (upper-division and graduate-level, in particular) are restricted because of full enrollment, limited space, prerequisites, etc.
4. To enroll in a restricted upper-division MEEN course, the student should contact the Department’s Undergraduate Advisor, who will grant the student access.
5. To enroll in a restricted graduate-level course, the student should contact the professor of the course for a permission code.
6. Permission codes can be used by the student in the online registration system or by contacting the Registration Office.

Other Requirements and Guidelines

Requirements and guidelines for all graduate programs can be found online at the Graduate School website, http://www.gradschool.utah.edu/index.php. All graduate students within the Department must, at a minimum, follow the Graduate School Schedule of Procedures. In some cases, Department procedures may deviate slightly from those of the Graduate School.
(particularly in terms of due dates for important documents). In these cases, students are expected to adhere to the Department deadlines.

Paperwork

It is the responsibility of the student to understand all forms and deadlines relating to their degree. It is further the responsibility of the student to fill out and obtain signatures for his or her paperwork. Students should not ask faculty, staff or fellow students to manage their forms for them.

The progress of all paperwork can be tracked through CIS. Forms relating to the degree can be tracked through the Graduate Student Summary. Forms relating to benefits (tuition waivers and subsidized health insurance) can be tracked through the Tuition Bill link in CIS.

Degree forms must be approved twice: first by original signature on the paper form, then by electronic signature in the online tracking system in the Graduate Student Summary. It is the responsibility of the student to ensure that both sets of signatures are on their paperwork.

Plagiarism

From the University of Utah Student Code (Code of Rights and Responsibilities):

“Academic misconduct” includes, but is not limited to, cheating, misrepresenting one's work, inappropriately collaborating, plagiarism, and fabrication or falsification of information, as defined further below. It also includes facilitating academic misconduct by intentionally helping or attempting to help another to commit an act of academic misconduct.

“Plagiarism” means the unacknowledged use or incorporation of any other person’s work in, or as a basis for, one’s own work offered for academic consideration or credit or for public presentation. Even unintentional falsification or any other unintentional misrepresentation of one’s work is considered to be a form of academic misconduct unless reasonable due diligence was conducted to affirm originality of work and data as one’s own. Plagiarism includes, but is not limited to, representing as one’s own, without attribution, any other individuals’ words, phrasing, ideas, sequences of ideas, information, or any other mode or content of expression.

Plagiarism and other kinds of academic misconduct are not tolerated in the Department of Mechanical Engineering. Starting in the Fall of 2011, all graduate students will be required to read an online plagiarism module and to pass a quiz.

Consequences of Plagiarism

Students caught plagiarizing material, even accidentally, will have a letter placed in their student file. Repeat offenders will be evaluated by the Graduate Committee, with potential consequences ranging from failure of the assignment, failure of the entire course, withdrawal of funding support, and – in extreme cases – expulsion from the program.

Plagiarism in the Ph.D. qualifying exam is also not tolerated. If the Ph.D. qualifying exam committee determines that a student has plagiarized, the student will fail the entire qualifying exam and a letter will be placed in the student file. Further action may be taken as deemed necessary by the Graduate Committee.

Please see the University Student Code for further information.

Probation Policy

If the cumulative GPA falls below a 3.0 then a student is on academic probation. A student on academic probation must obtain at least a 3.0 every semester until their cumulative
GPA is a 3.0 or above. If a student’s semester GPA falls below a 3.0 GPA and the student is on academic probation, the student will be dismissed from the graduate program.

Regular Courses/Special Topics/Seminar Classes
“Regular courses” are graduate courses that have regular class meetings, lectures, and/or labs. These courses have permanent course numbers in the range 6000-6899 and 7000-7899. Courses taken at the University of Utah at the 5000 level may not be retaken at the 6000 level for credit.

The Fluids Seminar (ME EN 7960) may count for up to 3 credit hours towards 1 degree. The class counts towards the minimum ME course credit requirements but not the 7000-level requirement. The class also counts toward the independent study limit.

Special Topics courses (ME EN 6960 and 7960) are considered regular courses since they have regular class meeting and lectures. Special Topics courses may be counted more than once to satisfy degree requirements so long as each class represents a distinct special topics course.

Independent Study, seminar classes and faculty consultation do not count as “regular” courses; only 3 credit hours total of these classes may be counted toward a degree (i.e., once 3 credit hours of Independent Study have been taken, no hours of seminar or faculty consultation may be counted, etc.). Unless otherwise approved by the Graduate Committee, an independent study must not comprise of only thesis research and must culminate in a tangible outcome (such as a final exam, a paper, or a project).

Retention of Application Materials
New graduate students who do not enroll the term they are accepted may defer their admission for one semester without penalty. After one semester, students must fill out the university application again and repay the application fee. The regular Department admissions deadlines apply.

Files for new students who do not enroll are kept for one year. Files not reactivated within one year are destroyed. Any subsequent application is treated as a new student application.

Thesis/Dissertation Guidelines
Information on guidelines for writing and formatting master’s theses or doctoral dissertations are available from the Thesis Editor in the Graduate School or online at http://www.gradschool.utah.edu/thesis/index.php. Students are expected to follow the Style and Format Guides in composing their thesis or dissertation.

Time Limits
Table 12 shows the time limits for each degree. Leaves of absence do not count toward the time limit. Classes taken during a non-matriculated career do not count towards the time limit.

On recommendation of the student’s supervisory committee and the Director of Graduate Studies, the Dean of the Graduate School or the Associate Dean for Academic Affairs of the College of Engineering (as appropriate) can modify or waive this requirement in meritorious cases.

Table 12: Degree Time Limits

<table>
<thead>
<tr>
<th>Degree</th>
<th>Time Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science</td>
<td>4 consecutive calendar years</td>
</tr>
<tr>
<td>Degree</td>
<td>Duration</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>Doctor of Philosophy, post-M.S.</td>
<td>6 consecutive years</td>
</tr>
<tr>
<td>Doctor of Philosophy, post-B.S.</td>
<td>8 consecutive years</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>4 consecutive years</td>
</tr>
</tbody>
</table>

Transfer Credit

A maximum of 6 transfer credit hours may be accepted for the program of study. Transcripts must be sent directly to the Graduate Admissions Office in order for them to be considered official. Please see the chapter on transferring credit for full policies and procedures.
Section VI: Graduate Courses Offerings
REPRESENTATIVE COURSES FOR AREAS OF RESEARCH
SPECIALIZATION 2013

The following list of courses is provided to assist students in the planning of their program of study in their specific area of specialization. The student's final selection of courses should be made in collaboration with the chair of their supervisory committee, and may include any selection of courses that best fit the student's academic and research goals. Core courses are those recommended (not required) for all students in the particular area of specialization. Secondary courses are those that some students may find beneficial for their particular research focus.

Table 13. Recommended Courses for the Thermal, Fluids, and Energy Systems Division

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Secondary Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>ME EN 7650 Adv. Conduction Heat Transfer</td>
<td>ME EN 6600 Intermediate Thermodynamics</td>
</tr>
<tr>
<td>ME EN 7670 Adv. Radiation Heat Transfer</td>
<td>ME EN 6720 Computational Fluid Dynamics</td>
</tr>
<tr>
<td>ME EN 7600 Advanced Thermodynamics</td>
<td>ME EN 6810 Thermal System Design</td>
</tr>
<tr>
<td></td>
<td>ME EN 6820 Thermal Environmental Engineering</td>
</tr>
<tr>
<td></td>
<td>ME EN 7960 Multiphase Transport in Porous Media</td>
</tr>
<tr>
<td></td>
<td>CHFEN 5153 Fundamentals of Combustion</td>
</tr>
<tr>
<td></td>
<td>MATH 6420 Partial Differential Equations</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME EN 7710 Environmental Fluid Mechanics</td>
<td>ME EN 6720 Computational Fluid Dynamics</td>
</tr>
<tr>
<td>ME EN 7720 Turbulent Flows and Mixing</td>
<td>ME EN 6400 Vibrations</td>
</tr>
<tr>
<td>ME EN 7600 Advanced Thermodynamics</td>
<td>ME EN 6620 Fundamentals of Microscale Eng.</td>
</tr>
<tr>
<td>ME EN 7660 Adv. Convection Heat Transfer</td>
<td>ME EN 6710 Aerodynamics</td>
</tr>
<tr>
<td>ME EN 7650 Adv. Conduction Heat Transfer</td>
<td>ME EN 6830 Aerospace Propulsion</td>
</tr>
<tr>
<td>ME EN 6530 Continuum Mechanics</td>
<td>ME EN 7960 Multiphase Transport in Porous Media</td>
</tr>
<tr>
<td>ME EN 6700 Intermediate Fluid Dynamics</td>
<td>ME EN 7960 Large Eddy Simulation</td>
</tr>
<tr>
<td></td>
<td>CHFEN 5153 Fundamentals of Combustion</td>
</tr>
<tr>
<td></td>
<td>MATH 5210 Introduction to Real Analysis</td>
</tr>
<tr>
<td></td>
<td>MATH 5410 Intro to Ordinary Differential Equations</td>
</tr>
<tr>
<td></td>
<td>MATH 5440 Intro to Partial Differential Equations</td>
</tr>
<tr>
<td></td>
<td>MATH 6210 Real Analysis</td>
</tr>
<tr>
<td></td>
<td>MATH 6410 Ordinary Differential Equations</td>
</tr>
<tr>
<td></td>
<td>MATH 6420 Partial Differential Equations</td>
</tr>
<tr>
<td>Energy Systems</td>
<td></td>
</tr>
<tr>
<td>ME EN 6800 Sustainable Energy Engineering</td>
<td>ME EN 6960 Sustainable Products and Processes</td>
</tr>
<tr>
<td>ME EN 6810 Thermal System Design</td>
<td>ME EN 7960 Multiphase Transport in Porous Media</td>
</tr>
<tr>
<td>ME EN 6820 Thermal Environmental Engineering</td>
<td>CVEEN 6700 Nuclear Engineering II</td>
</tr>
<tr>
<td></td>
<td>CVEEN 6710 Applied Nuclear Engineering II</td>
</tr>
<tr>
<td></td>
<td>CVEEN 6720 Nuclear Reactor Physics</td>
</tr>
<tr>
<td></td>
<td>CHFEN 5153 Fundamentals of Combustion</td>
</tr>
<tr>
<td></td>
<td>CHFEN 5303 Environmental Aspects of Fossil Fuels</td>
</tr>
<tr>
<td></td>
<td>CHFEN 5403 Introduction to Petrochemicals</td>
</tr>
</tbody>
</table>
Table 14. Recommended Courses for the Mechanics Division

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Secondary Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME EN 6300 Adv. Strength of Materials</td>
<td>ME EN 6510 Introduction to Finite Elements</td>
</tr>
<tr>
<td>ME EN 6400 Vibrations</td>
<td>ME EN 6520 Mechanics of Composite Materials</td>
</tr>
<tr>
<td>ME EN 6410 Intermediate Dynamics</td>
<td>ME EN 7060 Fatigue and Creep</td>
</tr>
<tr>
<td>ME EN 6500 Engineering Elasticity</td>
<td>ME EN 7070 Tribology and Corrosion</td>
</tr>
<tr>
<td>ME EN 6530 Continuum Mechanics</td>
<td>ME EN 7500 Engineering Material Science</td>
</tr>
<tr>
<td>ME EN 7530 Fundamentals of Fracture Mechanics</td>
<td>ME EN 7540 Advanced Finite Elements</td>
</tr>
</tbody>
</table>

Table 15. Recommended Courses for the Design, Ergonomics, Manufacturing and Systems Division

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Secondary Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergonomics and Safety</td>
<td></td>
</tr>
<tr>
<td>ME EN 6100 Ergonomics</td>
<td>ME EN 6030 Reliability Engineering</td>
</tr>
<tr>
<td>ME EN 6120 Human Factors</td>
<td>ME EN 6040 Quality Assurance Engineering</td>
</tr>
<tr>
<td>ME EN 6110 Introduction to Industrial Safety</td>
<td>ME EN 6410 Intermediate Dynamics</td>
</tr>
<tr>
<td>ME EN 7110 System Safety</td>
<td></td>
</tr>
<tr>
<td>Mechanical Design</td>
<td></td>
</tr>
<tr>
<td>ME EN 7060 Fatigue & Creep Cons. in Design</td>
<td>ME EN 6050 Fund. Of Micromachining Processes</td>
</tr>
<tr>
<td>ME EN 7070 Tribology &Corrosion Cons. in Design</td>
<td>ME EN 6110 Introduction to Industrial Safety</td>
</tr>
<tr>
<td>ME EN 6010 Principles of Manufacturing Processes</td>
<td>ME EN 6200 Classic Controls</td>
</tr>
<tr>
<td>ME EN 6100 Ergonomics</td>
<td>ME EN 6210 State Space Methods</td>
</tr>
<tr>
<td>ME EN 6030 Reliability Engineering</td>
<td>ME EN 6055 Microsystems Design and Characterization</td>
</tr>
<tr>
<td>ME EN 6040 Quality Assurance Engineering</td>
<td></td>
</tr>
<tr>
<td>ME EN 7500 Engineering Material Science</td>
<td>ME EN 6620 Fund. of Microscale Engineering</td>
</tr>
<tr>
<td>ME EN 7690 Advanced Manufacturing Processes</td>
<td>ME EN 6960 Microfluidic Chip Design</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>ME EN 6960 Fundamentals of Systems Engineering</td>
<td>ME EN 6030 Reliability Engineering</td>
</tr>
<tr>
<td>ME EN 6960 Systems Engineering II</td>
<td>ME EN 6055 Microsystems Design and Characterization</td>
</tr>
<tr>
<td>ME EN 6960 Systems Engineering III</td>
<td>ME EN 6960 Heterogeneous Microsystems</td>
</tr>
<tr>
<td></td>
<td>ME EN 6040 Quality Assurance Engineering</td>
</tr>
<tr>
<td></td>
<td>ME EN 6960 Project Management</td>
</tr>
<tr>
<td></td>
<td>ME EN 7110 System Safety</td>
</tr>
</tbody>
</table>
Table 16. Recommended Courses for the Robotics and Controls Division

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Secondary Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotics and Controls</td>
<td></td>
</tr>
<tr>
<td>ME EN 6200 Classic Controls</td>
<td>ME EN 6400 Vibrations</td>
</tr>
<tr>
<td>ME EN 6210 State Space Methods</td>
<td>ME EN 6500 Engineering Elasticity</td>
</tr>
<tr>
<td>ME EN 6220 Robotics</td>
<td>ME EN 6510 Introduction to Finite Elements</td>
</tr>
<tr>
<td>ME EN 6225 Geometric Computation for Motion Planning</td>
<td>ME EN 6300 Advanced Strength of Materials</td>
</tr>
<tr>
<td>ME EN 6230 Robot Control</td>
<td>ME EN 6530 Continuum Mechanics</td>
</tr>
<tr>
<td>ME EN 6240 Advanced Mechatronics</td>
<td>ME EN 7540 Advanced Finite Elements</td>
</tr>
<tr>
<td>ME EN 6410 Intermediate Dynamics</td>
<td>ME EN 7960 Haptics</td>
</tr>
<tr>
<td>ME EN 6960 System Dynamics</td>
<td>ECE 5570 Control of Electrical Motors</td>
</tr>
<tr>
<td>ME EN 7200 Nonlinear Controls</td>
<td>MATH 5410 Intro to Ordinary Differential Equations</td>
</tr>
<tr>
<td>ME EN 7210 Optimal Controls</td>
<td>MATH 5210 Introduction to Real Analysis</td>
</tr>
<tr>
<td>ME EN 7220 System Identification for Robotics</td>
<td>MATH 6210 Real Analysis</td>
</tr>
<tr>
<td>ME EN 7230 Robot Mobility and Manipulation</td>
<td></td>
</tr>
</tbody>
</table>
GRADUATE COURSE SCHEDULE

The following tables list the semesters in which courses affiliated with the Department divisions are expected to be taught. The matrices are subject to change and courses may be canceled due to low enrollment. Therefore, it is important to check the online class schedule each semester. These matrices are intended to assist new graduate students as they prepare their program of study for the upcoming years.

Table 17. Course Matrix for the TFES Division

<table>
<thead>
<tr>
<th>TFES Courses</th>
<th>Odd Years</th>
<th>Even Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>6700 Intermediate Fluid Dynamics</td>
<td>6700 Intermediate Fluid Dynamics</td>
</tr>
<tr>
<td></td>
<td>6800 Sustainable Energy Engineering</td>
<td>6800 Sustainable Energy Engineering</td>
</tr>
<tr>
<td></td>
<td>7600 Advanced Thermodynamics</td>
<td>6600 Intermediate Thermodynamics</td>
</tr>
<tr>
<td></td>
<td>7650 Advanced Conduction</td>
<td>7670 Advanced Radiation</td>
</tr>
<tr>
<td>Spring</td>
<td>6710 Aerodynamics</td>
<td>6810 Thermal System Design</td>
</tr>
<tr>
<td></td>
<td>6720 Computational Fluid Dynamics</td>
<td>6820 Thermal Environmental Engineering</td>
</tr>
<tr>
<td></td>
<td>7710 Environmental Fluid Mechanics</td>
<td>6830 Aerospace Propulsion</td>
</tr>
<tr>
<td></td>
<td>7720 Turbulent Flows & Mixing</td>
<td>7660 Advanced Convection</td>
</tr>
<tr>
<td></td>
<td>7960 Multiphase Transport in Porous Media</td>
<td>7960 Large Eddy Simulation</td>
</tr>
</tbody>
</table>

Notes: 1. Academic Year 2013-2014 is an “odd” year (determined by fall semester year). AY 2014-2015 is an “even” year

Table 18. Course Matrix for the Mechanics Division

<table>
<thead>
<tr>
<th>Mechanics Courses</th>
<th>Odd Years</th>
<th>Even Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>6300 Advanced Strength of Materials</td>
<td>6300 Advanced Strength of Materials</td>
</tr>
<tr>
<td></td>
<td>6500 Engineering Elasticity</td>
<td>6510 Introduction to Finite Elements</td>
</tr>
<tr>
<td></td>
<td>6510 Introduction to Finite Elements</td>
<td>7070 Tribology and Corrosion</td>
</tr>
<tr>
<td></td>
<td>7060 Fatigue and Creep</td>
<td>7500 Engineering Materials</td>
</tr>
<tr>
<td>Spring</td>
<td>6410 Intermediate Dynamics</td>
<td>6400 Vibrations</td>
</tr>
<tr>
<td></td>
<td>6520 Mechanics of Composite Materials</td>
<td>6520 Mechanics of Composite Materials</td>
</tr>
<tr>
<td></td>
<td>7540 Advanced Finite Elements</td>
<td>6530 Continuum Mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7530 Fundamentals of Fracture Mechanics</td>
</tr>
<tr>
<td>Summer</td>
<td>6510 Introduction to Finite Elements</td>
<td>6510 Introduction to Finite Elements</td>
</tr>
</tbody>
</table>

Notes: 1. Academic Year 2013-2014 is an “odd” year (determined by fall semester year). AY 2014-2015 is an “even” year
Table 19. Course Matrix for the Design, Manufacturing, and Ergonomics Division

<table>
<thead>
<tr>
<th>Design, Manufacturing, and Ergonomics Courses</th>
<th>Odd Years</th>
<th>Even Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>6055 Microsystems Design and Characterization</td>
<td>6055 Microsystems Design and Characterization</td>
</tr>
<tr>
<td></td>
<td>6100 Ergonomics</td>
<td>6100 Ergonomics</td>
</tr>
<tr>
<td></td>
<td>6120 Human Factors in Engineering Design</td>
<td>6620 Fundamentals of Microscale Engineering</td>
</tr>
<tr>
<td></td>
<td>6960 Fundamentals of Systems Engineering</td>
<td>6960 Fundamentals of Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>6960 Systems Engineering III - Capstone</td>
<td>6960 Systems Engineering III - Capstone</td>
</tr>
<tr>
<td></td>
<td>6960 Microfluidic Chip Design and Fabrication</td>
<td>6960 Microfluidic Chip Design and Fabrication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7960 Advanced Analysis of Manufacturing Processes</td>
</tr>
<tr>
<td>Spring</td>
<td>6040 Quality Assurance Engineering</td>
<td>6010 Principles of Manufacturing Processes</td>
</tr>
<tr>
<td></td>
<td>6050 Fundamentals of Micromachining Processes</td>
<td>6030 Reliability Engineering</td>
</tr>
<tr>
<td></td>
<td>6110 Introduction to Industrial Safety</td>
<td>6050 Fundamentals of Micromachining Processes</td>
</tr>
<tr>
<td></td>
<td>6960 Heterogeneous Microsystems</td>
<td>6960 Heterogeneous Microsystems</td>
</tr>
<tr>
<td></td>
<td>6960 (6040) Occupational Safety and Health Solutions</td>
<td>6960 (6040) Occupational Safety and Health Solutions</td>
</tr>
<tr>
<td></td>
<td>6960 Systems Engineering II</td>
<td>6960 Systems Engineering II</td>
</tr>
<tr>
<td></td>
<td>6960 Sustainable Products and Processes</td>
<td>6960 Sustainable Products and Processes</td>
</tr>
<tr>
<td></td>
<td>7100 Advanced Ergonomics</td>
<td>7100 System Safety</td>
</tr>
<tr>
<td></td>
<td>7105 Advanced Ergonomics Lab</td>
<td>7120 Functional Anatomy</td>
</tr>
<tr>
<td>Summer</td>
<td>6960 Project Management in a Technical Environment</td>
<td>6960 Project Management in a Technical Environment</td>
</tr>
</tbody>
</table>

Notes: 1. Academic Year 2013-2014 is an “odd” year (determined by fall semester year). AY 2014-2015 is an “even” year
Table 20. Course Matrix for the Robotics Division

<table>
<thead>
<tr>
<th></th>
<th>Odd Years</th>
<th>Even Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotics Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>6200 Classical Control Systems</td>
<td>6200 Classical Control Systems</td>
</tr>
<tr>
<td></td>
<td>6220 Robotics</td>
<td>6220 Robotics</td>
</tr>
<tr>
<td></td>
<td>6225 Geometric Computation for Motion Planning</td>
<td>6225 Geometric Computation for Motion Planning</td>
</tr>
<tr>
<td></td>
<td>6960 System Dynamics</td>
<td>6960 System Dynamics</td>
</tr>
<tr>
<td></td>
<td>7230 Robot Mobility and Manipulation</td>
<td>7200 Nonlinear Control</td>
</tr>
<tr>
<td>Spring</td>
<td>6210 State Space Control</td>
<td>6210 State Space Control</td>
</tr>
<tr>
<td></td>
<td>6230 Robot Control</td>
<td>6230 Robot Control</td>
</tr>
<tr>
<td></td>
<td>6240 Advanced Mechatronics</td>
<td>7210 Optimal Control</td>
</tr>
<tr>
<td></td>
<td>7220 System Identification for Robotics</td>
<td>7960 Haptics</td>
</tr>
</tbody>
</table>

Notes: 1. Academic Year 2013-2014 is an “odd” year (determined by fall semester year). AY 2014-2015 is an “even” year.
Below are course descriptions for the classes offered through the Department. The number in the parenthesis indicates the number of credit hours each course is worth. Please check the appropriate Course Matrix for information regarding when each course is expected to be taught.

6010 Principles of Manufacturing Processes (3) Prerequisite: ME EN 2650 and Graduate status.
Application of fundamental theories in solid mechanics, heat transfer, chemistry and surface science in solving complex problems in material processes. Meets with ME EN 5010.

6030 Reliability Engineering (3) Prerequisite: ME EN 4050 and Graduate status.
Application of statistical concepts for interpretation of component and system failures, redundancy, maintainability, exponential failure laws, and failure prediction techniques. Meets with ME EN 5030.

6040 Quality Assurance Engineering (3) Prerequisite: ME EN 4050 and Graduate status.
Acceptance sampling procedures, control charts for quality controls, military standards in controlling quality. Meets with ME EN 5040.

6050 Fundamentals of Micromachining Processes (3) Cross listed as MSE 6421, BIOEN 6421, ECE 6221.
Meets with ECE 5221 and ME EN 5050. Introduction to the principles of micromachining technologies. Topics include photolithography, silicon etching, thin film deposition and etching, electroplating, polymer micromachining, and bonding techniques. A weekly lab and a review of micromachining applications is included. Graduate students only. Extra work required.

6055 Microsystems Design and Characterization (4) Cross listed as MET E 6055, BIOEN 6423, MSE 6055, ECE 6225, CH EN 6659. Prerequisite: Graduate status (or instructor approval); Microsystems or semiconductor lab.
Meets with ME EN 5055, ECE 5225, MET E 5055, MSE 5055, CH EN 5659. Third in a 3-course series on Microsystems Engineering. This course generalizes microsystems design considerations with practical emphasis on MEMS and IC characterization/physical analysis. Two lectures, one lab per week, plus 1/2 hour lab lecture. Must also register for ME EN 6056 (0-credit lab with fees). Graduate students only. Extra work required.

6100 Ergonomics (3) Prerequisite: ME EN Graduate status or instructor consent.
Introduction to study of humans at work; disability and accident prevention, and productivity improvement. Human musculoskeletal system as mechanical structure. Recognition, evaluation, and control of ergonomic stresses in occupational environment. Meets with ME EN 5100.

6110 Introduction to Industrial Safety (3) Prerequisite: ME EN Graduate status or instructor consent.
6120 Human Factors in Engineering Design (3) Prerequisite: Graduate or upper division undergraduate status in Engineering.

An introduction to the discipline of Human Factors Engineering. HFE is the science of designing for human use. Course will focus on information processing and the cognitive aspects of ergonomics design. Students will gain insight into effects of various environments (heat, cold, noise, information overload, etc.) on humans and human performance. Physical ergonomics (cumulative trauma disorders and biomechanics will be addressed briefly. These topics are covered in more depth in ME EN 6100 Ergonomics and ME EN 7100 Advanced Ergonomics. Meets with ME EN 5120.

6200 Classical Control Systems (3) Prerequisite: ME EN 3210 and ME EN Graduate status.

Meets with ME EN 5200. Students learn modeling in the frequency domain, time domain, and sampled data domain. The theory and application of techniques and tools used for the design of feedback control systems, including root locus, Bode and Nyquist techniques are discussed for continuous and sampled systems. Meets with ME EN 5200.

6210 State Space Methods (3) Cross listed as CH EN 6203. Prerequisite: CH EN 4203 or ME EN 3210 or equivalent.

Introduction to modeling of multivariable systems in state space form. System analysis including stability, observability and controllability. Control system design using pole placement, and linear quadratic regulator theory. Observer design. Meets with ME EN 5210 and CH EN 5203.

6220 Robotics (3) Cross listed as CS 6310. Prerequisite: CP SC 1000 and MATH 2250 and Graduate Status.

6225 Geometric Computation for Motion Planning (3) Cross listed as CS 6370. Prerequisite: CS 1000 and MATH 2250.

Geometric computation is the study practical algorithms for solving queries about geometric properties of computer models and relationships between computer models. Robot motion planning uses these algorithms to formulate safe motion through a modeled environment. Topics to be covered are spatial subdivision and model hierarchies, model intersection, distance queries and distance fields, medial axis computations, configuration space, and motion planning.

6230 Robot Control (3) Prerequisite: Graduate standing required.

6240 Advanced Mechatronics (3) Prerequisite: Graduate standing required.

6300 Advanced Strength of Materials (3) Prerequisite: ME EN 3300 and MATH 2210 and MATH 2250 and Graduate status.

Strength of materials approach to advanced problems in stress analysis of structural members, and prediction of their failure; advanced topics in beam bending; torsion of noncircular cross-
sections, and thin-walled tubes; inelastic bending, and torsion; energy methods; elastic instability. Meets with ME EN 5300.

6400 Vibrations (3) Prerequisite: ME EN 2080 and MATH 2210 and 2250 and Graduate status.
Free and forced vibrations of discrete linear systems with and without damping; matrix methods for multiple-degree-of-freedom systems; isolation of shock and vibration; and applications. Meets with ME EN 5400.

6410 Intermediate Dynamics (3) Prerequisite: ME EN 2080 and MATH 2210 and 2250 and Graduate status.
Review of basic dynamics, transformation of coordinate systems, rotating coordinate systems, Lagrange methods, Euler's equations, and dynamics of machinery. Meets with ME EN 5410.

6500 Engineering Elasticity (3) Prerequisite: ME EN 3300 and MATH 3150 and Graduate status.
Practical, applied approach to elasticity; physical meaning of governing equations, and solutions of problems of practical importance; stresses, strains, and Hooke's law; equations of equilibrium, and compatibility; problems in plane stress and plane strain, torsion, and bending, and introduction to three-dimensional problems. Meets with ME EN 5500.

6510 Introduction to Finite Elements (3) Prerequisite: ME EN 2150 and MATH 2210 and 2250 and Graduate status.
Practical approach to finite-element analysis of solid mechanics, diffusion, and fluid mechanics problems. Introduction to use of commercial finite element programs. Introduction to theoretical basis; simple elements, element stiffness, boundary conditions, and modeling considerations. Meets with ME EN 5510.

6520 Mechanics of Composite Materials (3) Prerequisite: ME EN 3300 and MATH 2210 and Graduate status.

6530 Introduction to Continuum Mechanics (3) Prerequisite: MATH 2210, ME EN 3300.

6600 Intermediate Thermodynamics (3) Prerequisite: ME EN 3600 and MATH 2210 and 2250 and Graduate status.
Equilibrium thermodynamics, availability analysis, equations of state, thermodynamic property relations, mixtures, multiphase-multicomponent systems, combustion reactions and availability and statistical thermodynamics. Meets with ME EN 5600.

6620 Fundamentals of Microscale Engineering (3) Prerequisite: Graduate or upper division undergraduate status in Engineering.
Introduction to microscale and nanoscale engineering. Topics include scaling laws, metrology methods, and microfabrication technologies such as photolithography, sputtering, ion-beam
etching, chemical vapor deposition, bulk micromachining, surface micromachining, LIGA, laser ablation, and micromilling. Microscale thermal fluid phenomena, such as slip flow, temperature jump, viscosity variation, surface tension effects and conduction in thin films, are introduced. MEMS and microfluidic applications, such as sensors, actuators, micrototal analysis systems, electronic cooling are presented. Meets with ME EN 5620.

6700 Intermediate Fluid Dynamics (3) Prerequisite: ME EN 3700 and Graduate status.
Introduction to classical fluid mechanics. Derivation and development of the differential forms of mass, momentum and energy transport. Topics to be covered include: Laminar and turbulent boundary layers, dimension/scaling analysis, vorticity dynamics and an introduction to turbulence. Emphasis is placed on the physical interpretation of mathematical models and interpretation of experimental data in the context of the governing equations. Meets with ME EN 5700.

6710 Aerodynamics (3) Prerequisite: ME EN 2080 and 3700 and Graduate status.
Flow around bodies, inviscid flow, airfoil theory, lift and drag for lifting bodies, compressible aerodynamics, boundary layers, aircraft preliminary design. Meets with ME EN 5710.

6720 Computational Fluid Dynamics (3) Cross listed as CH EN 6355. Prerequisite: (ME EN 2450 and 3700) or (CH EN 2450 and 3353) and graduate status or instructor consent.
Survey of approaches including time accurate and steady-state methods, explicit and implicit techniques. Eulerian and Lagrangian methods, laminar and turbulent flow, compressible and incompressible approaches, projection methods, stability considerations, etc. Application of CFD to mixing, heat transfer and reaction. Meets with CH EN 5353 & ME EN 5720.

6800 Sustainable Energy Engineering (3) Prerequisite: ME EN 3600, 3650.
Engineering of energy collection and production systems that satisfy long-term energy needs while minimizing damage to the earth's ecosystem. Conversion of chemical and nuclear fuels to produce work or electrical energy. Solar, wind, biomass, geothermal, co-generation and direct energy conversion. Conservation, seasonal underground energy storage, and hydrogen production technologies.

6810 Thermal System Design (3) Prerequisite: ME EN 3600 and 3650 and Graduate status.
Design of steam-power plants, feed-water heater systems, pumping systems, compressor blades, turbine blades, and heat exchangers. Equation fitting and economic analysis as basis of design decisions. Optimization of thermal systems using Lagrange multipliers, search methods, dynamic programming, geometric programming, and linear programming. Probabilistic approaches to design. Meets with ME EN 5810.

6820 Thermal Environmental Engineering (3) Prerequisite: ME EN 3600 and 3650 and Graduate status.

6830 Aerospace Propulsion (3) Prerequisite: ME EN 3600 and 3700 and Graduate status.
Analysis and design of propulsion systems for aerospace vehicles: solid and liquid chemical rocket systems, nuclear rocket engines, electrical rocket engines, nozzle theory, jet engine component analysis, turboprop engines, turbojet engines, ramjet engines, and turbofan engines. Meets with ME EN 5830.
6950 Independent Study (1 to 3) Prerequisite: Graduate standing required.

6955 Master of Engineering Project (1 to 4) Prerequisite: Graduate standing required. Required only for Master of Engineering students. Taken in lieu of thesis research hours.

6960 Fundamentals of Systems Engineering (3) Prerequisite: Graduate standing required. The first course in a three-course series. Required for the Systems Engineering Certificate.

6960 Systems Engineering II (3) Prerequisite: Graduate standing required. The second course in a three-course series. Required for the Systems Engineering Certificate.

6960 Systems Engineering III (3) Prerequisite: Graduate standing required. The third course in a three-course series. Required for the Systems Engineering Certificate.

6960 Microfluidic Chip Design and Fabrication (3) Prerequisite: Graduate standing required.

6960 Heterogeneous Microsystems (3) Prerequisite: Graduate standing required.

6960 Occupational Safety and Health Solutions (3) Prerequisite: Graduate standing required.

6960 Sustainable Products and Processes (3) Prerequisite: Graduate standing required.

6960 Project Management in a Technical Environment (3) Prerequisite: Graduate standing required.

6960 System Dynamics (3) Prerequisite: Graduate standing required.

6960 Special Topics (1 to 4) Prerequisite: Graduate standing required. Contemporary problems in Mechanical Engineering.

6975 Research and Thesis: Master of Science (1 to 12) Prerequisite: ME EN Graduate status. For MST students. At least 9 credit hours of 6975 are required to graduate.

6980 Faculty Consultation: Master of Science (3) Prerequisite: ME EN Graduate status.

7060 Fatigue and Creep Considerations in Design (3) Prerequisite: Graduate standing required. Failure modes of fatigue and creep, statistics, and probabilistic modeling. Design of metals, alloys, polymers, ceramics, and composites; mechanical and structural component analysis using safe-life, fail-safe, damage-tolerant, and residual-life concepts. Design methods.

7070 Tribology and Corrosion Considerations in Design (3) Prerequisite: ME EN Graduate status. Tribology and corrosion considerations for improved mechanical/structural design; surface topography, friction of metals, polymers, ceramics, and composites; wear and abrasion; kinetics of corrosion processes and design considerations.

7100 Advanced Ergonomics: Occupational Biomechanics (3) Prerequisite: Instructor consent or ME EN Graduate status. Recommended Prerequisite: ME EN 2150 and 2080 and one
Application of engineering statics and dynamics in determining biomechanical stresses on humans in the work environment; anthropometric measurement methodologies; determination of physiological stresses during work.

7105 Advanced Ergonomics: Occupational Biomechanics Laboratory (1) Prerequisite: Instructor consent or ME EN Graduate status. Recommended Prerequisite: ME EN 2150 and 2080 and one of 5100 or 6100.

Empirical evaluation of biomechanical and physiological stresses on humans in the work environment.

7110 System Safety (3) Prerequisite: ME EN Graduate status or instructor consent. Recommended Prerequisite: ME EN 5110 or 6110.

Systems safety techniques for accident prevention and for quantification of hazards inherent in machines and person/machine systems. Preliminary hazard analysis, failure mode and effects analysis, fault tree analysis.

7120 Functional Anatomy for Engineers (3) Prerequisite: Instructor's consent.

This course is intended to familiarize mechanical engineers and bioengineers with the structure and function of the human musculoskeletal system. Lectures are followed by laboratory cadaver dissection dealing with the specific musculoskeletal structure discussed in the lecture. Topics include functional anatomy of the anterior abdominal wall, hip/upper leg, hand/wrist/elbow, shoulder/arm, ankle/foot, back, and knee. The class will also include general biomechanical modeling of some joints. Special emphasis will be placed on ergonomic concerns, particularly to the distal upper extremity, shoulder, and low back. Meets with BIOEN 6230.

7200 Nonlinear Controls (3) Prerequisite: ME EN 6210 or 5210 and ME EN Graduate status. The modeling, analysis, and control of nonlinear systems is discussed.

7210 Optimal Controls (3) Prerequisite: ME EN 6210 or 5210 and ME EN Graduate status. Optimization of systems using variational calculus and simulation techniques are discussed.

7220 System Identification for Robotics (3) Prerequisite: ME EN Graduate status. Current topics in the area of system identification are discussed.

7230 Robot Mobility and Manipulation (3) Prerequisite: ME EN 6220 or 5220.

Covers the kinematics, dynamics, and control of robotic manipulators. Projects that involve controlling robots will be an integral part of the course.

7500 Engineering Materials (3) Prerequisite: ME EN 3300 and Graduate status. Mechanical properties of materials relating mechanical behavior and atomic phenomena; topics in elasticity, plasticity, fatigue, and fracture in metals, glasses, polymers, and elastomers. Special problems in thermal, electrical, corrosive, and other material properties relevant to engineering design.

7530 Fundamentals of Fracture Mechanics (3) Prerequisite: One of ME EN 5500 or 6500 or 7520, Graduate status. Theory and application of fracture mechanics to design against catastrophic failures in

7540 Advanced Finite Elements (3) Prerequisite: Either ME EN 5510 or 6510, and Graduate status.
Applications to problems from solid, heat transfer, and fluid mechanics, and advanced elements. Consideration of nonlinear and time-dependent problems.

7600 Advanced Thermodynamics (3) Prerequisite: ME EN 3600 and MATH 2210 and 2250 and Graduate status.
Thermodynamic probability, statistical mechanics for systems of independent particles, the partition function, macroscopic thermodynamic properties for gases and solids from basic particle behavior. Course content will include topics such as Maxwell's equations, biothermodynamics and applied thermodynamics.

7650 Advanced Conduction Heat Transfer (3) Prerequisite: ME EN 3650 and Graduate status.
Fourier's law of conduction, heat diffusion equations, analytical and numerical solutions of multiple-dimensional, steady- and unsteady-conduction heat transfer, and approximate solutions of heat conduction problems.

7660 Advanced Convection Heat Transfer (3) Prerequisite: ME EN 3650 and Graduate status.

7670 Advanced Radiation Heat Transfer (3) Prerequisite: ME EN 3650 and Graduate status.
Fundamentals of thermal radiation, radiative properties of solids and gases, radiation exchange between surfaces, gas radiation, combined modes of heat transfer.

7710 Environmental Fluid Dynamics (3) Prerequisite: Graduate status and ME EN 6700 or Instructor Permission.
Introduction to environmental fluid mechanics focusing primarily on micro meteorological processes occurring in the atmospheric boundary layer (ABL). Covers: surface energy budget, basic thermodynamics relationships, basic equations of motion & energy, including important simplifications relating to rotation & atmospheric stability turbulence in the ADL (including basic statistics and spectral analysis, ABL similarity theory and dispersion processes. Projects involve utilizing real atmospheric boundary layer data sets.

7720 Turbulent Flows and Mixing (3) Prerequisite: Graduate level fluid mechanics or instructor permission.
Course covers basic theory and description of turbulent flows and turbulent mixing processes: Statistical analysis, scaling analysis, and equilibrium range theories. Course covers modeling of turbulent flows, including k-e and Reynolds stress modeling, a variety of stochastic models for turbulent scalar mixing, and large eddy simulation. Physically based descriptions of turbulent flows from both experimental observation and direct numerical simulation are included. Offered even numbered years.
7960 **Multiphase Transport in Porous Media** (3) Prerequisite: Graduate standing required.

7960 **Large Eddy Simulation** (3) Prerequisite: Graduate standing required.

7960 **Haptics** (3) Prerequisite: Graduate standing required.

7960 **Special Topics** (1 to 3) Prerequisite: Graduate standing required.
 Contemporary problems in Mechanical Engineering.

7970 **Ph.D. Dissertation** (1 to 12) Prerequisite: ME EN Graduate status.
 Research hours for Ph.D. students. Register for your faculty advisor’s section.

7980 **Faculty Consultation: Doctoral** (3) Prerequisite: ME EN Graduate status.

7990 **Continuing Registration: Doctoral** (0) Prerequisite: ME EN Graduate status.
 Used to keep registration career active during semesters that students are not using any
 University resources (such as during correction semesters).
Section VII: Student Resources and Forms
HOW TO TRANSFER COURSES FROM ANOTHER UNIVERSITY

Transfer Policies
- Transfer classes must be classified as graduate level by the university at which they were taken.
- Classes must be graded at a B or higher and cannot be counted toward another degree.
- Up to 6 credit hours (typically 2 courses) may be transferred.
- Because of the time it takes to process transfer requests, it is recommended that students not take transfer classes during their final semester of study. Doing so can delay the awarding of the degree.

Transfer Procedures
1. The transfer class must first be completed and graded. If class is in progress, please wait until the completion of the class before beginning the transfer process.
2. Obtain an official transcript from the transferring university and mail it to the University of Utah Admissions Office. Make sure the transcript includes the final grade for the class.
3. Fill out the Graduate Transfer Credit form, obtain your chair’s signature, and submit the form to the Graduate Advisor.
4. The Graduate Advisor will forward your request to the appropriate faculty members in order to evaluate whether the class is transferrable. You may be asked to provide a copy of the class syllabus or other information about the course or university.
5. If the class is approved for transfer at the department level, the form will be sent to the Graduate School to have the class approved at the University level.
6. If the Graduate School approves of the transfer course, the course will be available for transfer. It will appear in CIS in your Graduate Student Summary, under the Program of Study tab, in the Transfer Classes section.
7. Last, you must get the approval of your committee to count the class for your degree. List the transfer class on your paper Program of Study with all of your other credit hours for your degree and ask your committee to approve it.
RESOURCES AROUND CAMPUS

The University is divided into several different departments, each with their own focus and specialized knowledge. It is the student’s responsibility to know who to go to for specific assistance. Table 21 describes some of the most common on-campus resources. More resources can be found via the University A-Z Index.

Table 21. Common On-Campus Resources

<table>
<thead>
<tr>
<th>Questions regarding…</th>
<th>Resource</th>
<th>Web link</th>
<th>Best contact method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition rates and bill estimates</td>
<td>Income Accounting</td>
<td>http://fbs.admin.utah.edu/income/</td>
<td>(801) 581-7344 In person: 165 SSB</td>
</tr>
<tr>
<td>Tuition bill – view and pay</td>
<td>CIS</td>
<td>www.cis.utah.edu</td>
<td>Via web</td>
</tr>
<tr>
<td>Projects and funding</td>
<td>Individual professors</td>
<td>http://mech.utah.edu/faculty.html</td>
<td>Varies</td>
</tr>
<tr>
<td>Paycheck/stipend amount</td>
<td>Sheila Olson</td>
<td>http://mech.utah.edu</td>
<td>In person: 2110 MEB</td>
</tr>
<tr>
<td>Classes (what to take, whether something will count toward a degree, etc)</td>
<td>Your faculty advisor or the Director of Grad Studies</td>
<td>http://mech.utah.edu/faculty.html</td>
<td>Varies from professor to professor.</td>
</tr>
<tr>
<td>I-20 matters</td>
<td>International Admissions</td>
<td>http://www.sa.utah.edu/admiss/InterGrad.htm</td>
<td>In person: 250 SSB</td>
</tr>
<tr>
<td>Forms and deadlines</td>
<td>ME Graduate Advisor</td>
<td>http://mech.utah.edu/grad.html</td>
<td>grad@mech.utah.edu</td>
</tr>
</tbody>
</table>
USEFUL WEBSITES

A-Z Website Index:
http://www.utah.edu/portal/site/uuhome/menutem.4694b7a3dd66f40516df1210d1e916b9/?
vgnextoid=8ee892d315bb3110VgnVCM1000001c9e619bRCRD

Calendar of Deadlines (M.S.):
http://www.gradschool.utah.edu/students/masters_calendar.php

Calendar of Deadlines (Ph.D.):
http://www.gradschool.utah.edu/students/doctoral_calendar.php

Career Services:
www.careers.utah.edu

Class Schedule and General Catalogue:
www.utah.edu/students/catalogue.html

Conference Travel Information:
http://www.gradschool.utah.edu/students/gstaa.php
http://fbs.admin.utah.edu/travel/
http://www.asuu.utah.edu/financeguidelines/

Financial Aid:
www.sa.utah.edu/finance

The Graduate School:
http://www.gradschool.utah.edu/students/index.php

Grad School Regulations:
http://www.gradschool.utah.edu/catalog/index.php

Health Insurance Information:
http://www.gradschool.utah.edu/tbp/insurance.php
http://www.studenthealth.utah.edu/FAQ/FAQStudentHealthInsurance.htm

Libraries on Campus:
www.lib.utah.edu

Parking and Commuter Services:
www.parking.utah.edu

Student Health Center:
www.studenthealth.utah.edu

Thesis Office:
http://www.gradschool.utah.edu/thesis/index.php
Tuition Benefit Information:
 http://www.gradschool.utah.edu/tbp/guidelines.php

Tuition Rates and Fee Information:
 www.acs.utah.edu/tuition

University Student Handbook:
 www.acs.utah.edu/sched/handbook/toc.html

Visa, Work Authorization and Other International Student Information:
 http://www.ic.utah.edu/students/current/index.htm
APPROVED MATH ELECTIVES

These courses are approved to fulfill elective (non-MEEN) course requirements. Electives must still be approved by the student’s committee chair before they can be applied to a degree.

MATH 5010 Introduction to Probability
MATH 5040 Stochastic Processes and Simulation I
MATH 5050 Stochastic Processes and Simulation II
MATH 5080 Statistical Inference I
MATH 5090 Statistical Inference II
MATH 5210 Introduction to Real Analysis
MATH 5215 Applied Fourier Analysis
MATH 5250 Matrix Analysis
MATH 5410 Introduction to Ordinary Differential Equations
MATH 5420 Ordinary Differential Equations and Dynamical Systems
MATH 5440 Introduction to Partial Differential Equations
MATH 5470 Applied Dynamical Systems
MATH 5600 Survey of Numerical Analysis
MATH 5610 Introduction to Numerical Analysis I
MATH 5620 Introduction to Numerical Analysis II
MATH 5650 Topics in Numerical Analysis
MATH 5660 Parallel Numerical Methods
MATH 5710 Introduction to Applied Mathematics I
MATH 5720 Introduction to Applied Mathematics II
MATH 5740 Mathematical Modeling
MATH 5750 Topics in Applied Mathematics
MATH 6070 Mathematical Statistics
MATH 6210 Real Analysis
MATH 6220 Complex Analysis
MATH 6410 Ordinary Differential Equations
MATH 6420 Partial Differential Equations
MATH 6430 Advanced Partial Differential Equations
MATH 6440 Advanced Dynamical Systems
MATH 6610 Analysis of Numerical Methods I
MATH 6620 Analysis of Numerical Methods II
MATH 6630 Numerical Solutions of Partial Differential Equations
MATH 6710 Applied Linear Operator and Spectral Methods
MATH 6720 Applied Complex Variables and Asymptotic Methods
MATH 6730 Asymptotic and Perturbation Methods
MATH 6740 Bifurcation Theory
MATH 6750 Continuum Mechanics: Fluids
MATH 6760 Continuum Mechanics: Solids
MATH 6790 Case Studies in Computational Engineering and Science
All MATH 7000 level courses