Homework Solutions \# 6

4-106. Replace the force system acting on the beam by an equivalent force and couple moment at point B.
$\begin{aligned} \stackrel{+}{\rightarrow} F_{R_{1}}=\Sigma F_{x} ; \quad F_{R_{1}} & =1.5 \sin 30^{\circ}-2.5\left(\frac{4}{5}\right) \\ & =-1.25 \mathrm{kN}=1.25 \mathrm{kN} \leftarrow\end{aligned}$

$$
+\uparrow F_{R,}=\Sigma F_{y} ; \quad F_{R,}=-1.5 \cos 30^{\circ}-2.5\left(\frac{3}{5}\right)-3
$$

Thus,

$$
F_{R}=\sqrt{F_{R_{A}^{2}}^{2}+F_{R_{1}^{2}}^{2}}=\sqrt{1.25^{2}+5.799^{2}}=5.93 \mathrm{kN}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{F_{R_{2}}}{F_{R_{2}}}\right)=\tan ^{-1}\left(\frac{5.799}{1.25}\right)=77.8^{\circ}
$$

$C+M_{R_{s}}=\Sigma M_{B} ; \quad M_{R_{8}}=1.5 \cos 30^{\circ}(2)+2.5\left(\frac{3}{5}\right)(6)$
$=11.6 \mathrm{kN} \cdot \mathrm{m}$ (Counterclockwise) Ans
*4-108. Replace the two forces by an equivalent resultant force and couple moment at point O. Set $F=15 \mathrm{lb}$.

4-110. Replace the force and couple moment system acting on the overhang beam by a resultant force and couple moment at point A.

Equivalent Resultant Force: Forces F_{1} and \mathbf{F}_{2} are resolved into their x and y components, Fig. a. Summing these force components algebraically along the x and y axes,

$$
\begin{array}{ll}
+ \\
+ \\
\left(F_{R}\right)_{x}=\Sigma F_{x}: & \left(F_{R}\right)_{x}=26\left(\frac{5}{13}\right)-30 \sin 30^{\circ}=-5 \mathrm{kN}=5 \mathrm{kN} \leftarrow \\
+\uparrow\left(F_{R}\right)_{y}=\Sigma F_{y}: & \left(F_{R}\right)_{y}=-26\left(\frac{12}{13}\right)-30 \cos 30^{\circ}=-49.98 \mathrm{kN}=49.98 \mathrm{kN} \downarrow
\end{array}
$$

Ans.

$$
F_{R}=\sqrt{\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}}=\sqrt{5^{2}+49.98^{2}}=50.23 \mathrm{kN}=50.2 \mathrm{kN}
$$

$$
\theta=\tan ^{-1}\left[\frac{\left(F_{R}\right)_{y}}{\left(F_{R}\right)_{x}}\right]=\tan ^{-1}\left[\frac{49.98}{5}\right]=84.29^{\circ}=84.3^{\circ}
$$

Equivalent Resultant Couple Moment: Applying the principle of moments, Figs. a and b, and summing the moments of the force components algebraically about point A,

$$
\begin{aligned}
& C+\left(M_{R}\right)_{A}=\Sigma M_{A} ; \quad\left(M_{R}\right)_{A}=30 \sin 30^{\circ}(0.3)-30 \cos 30^{\circ}(2)-26\left(\frac{5}{13}\right)(0.3)-26\left(\frac{12}{13}\right)(6)-45 \\
&=-239.46 \mathrm{kN} \cdot \mathrm{~m}=239 \mathrm{kN} \cdot \mathrm{~m} \text { (clockwise) }
\end{aligned}
$$

Ans.

(a)

4-130. The building slab is subjected to four parallel column loadings. Determine the equivalent resultant force and specify its location (x, y) on the slab. Take $F_{1}=20 \mathrm{kN}$, $F_{2}=50 \mathrm{kN}$.

$+\downarrow F_{R}=\Sigma F_{z} ;$	$F_{R}=20+50+20+50=140 \mathrm{kN}$
$M_{R y}=\Sigma M_{y} ;$	$140(x)=(50)(4)+20(10)+50(10)$
	$x=6.43 \mathrm{~m}$
$M_{R x}=\Sigma M_{x} ;$	$-140(y)=-(50)(3)-20(11)-50(13)$
	$y=7.29 \mathrm{~m}$

Ans
-4-141. Replace the three forces acting on the plate by a wrench. Specify the magnitude of the force and couple moment for the wrench and the point $P(x, y)$ where its line of action intersects the plate.

$$
\begin{aligned}
& \mathbf{F}_{R}=\{500 \mathrm{i}+300 \mathrm{j}+800 \mathrm{k}\} \mathrm{N} \\
& F_{R}=\sqrt{(500)^{2}+(300)^{2}+(800)^{2}}=990 \mathrm{~N} \\
& \mathbf{u}_{F R}=\{0.5051 \mathrm{i}+0.3030 \mathrm{j}+0.8081 \mathrm{k}\} \\
& M_{R_{i}^{\prime}}=\Sigma M_{x^{\prime}} ; \quad M_{R_{x}}=800(4-y) \\
& M_{R ;}=\Sigma M_{y^{\prime}} ; \quad M_{R_{f}}=800 x \\
& M_{R_{i}}=\Sigma M_{z^{\prime}} ; \quad M_{R_{R^{\prime}}}=500 y+300(6-x) \\
& \text { Since } M_{R} \text { also acts in the direction of } \mathbf{u}_{F R}, \\
& M_{R}(0.5051)=800(4-y) \\
& M_{R}(0.3030)=800 x \quad \\
& M_{R}(0.8081)=500 y+300(6-x) \\
& M_{R}=3.07 \mathrm{kN} \cdot \mathrm{~m} \quad \text { Ans }
\end{aligned}
$$

4-142. Replace the distributed loading with an equivalent resultant force, and specify its location on the beam measured from point A.

Loading: The distributed loading can be divided into four parts as shown in Fig. a. The magnitude and location
of the resultant force of each part acting on the beam are also indicated in Fig. a.
Resultants: Equating the sum of the forces along the y axis of Figs. a and b,

$$
+\downarrow F_{R}=\Sigma F_{y} ; \quad \quad F_{R}=\frac{1}{2}(15)(3)+\frac{1}{2}(5)(3)+10(3)+\frac{1}{2}(10)(3)=75 \mathrm{kN} \downarrow \quad \text { Ans. }
$$

If we equate the moments of \mathbf{F}_{R}, Fig. b, to the sum of the moment of the forces in Fig. a about point A,

$$
C+\left(M_{R}\right)_{A}=\Sigma M_{A} ;-75(\bar{x})=\frac{1}{2}(15)(3)(1)-\frac{1}{2}(5)(3)(1)-10(3)(1.5)-\frac{1}{2}(10)(3)(4)
$$

$$
\bar{x}=1.20 \mathrm{~m}
$$

Ans.

(a)

4-150. The beam is subjected to the distributed loading. Determine the length b of the uniform load and its position a on the beam such that the resultant force and couple moment acting on the beam are zero.

Require $F_{R}=\mathbf{0}$.

$+\uparrow F_{R}=\Sigma F_{y} ; \quad 0=180-40 b$

$b=4.50 \mathrm{ft}$
Require $M_{R_{A}}=0$. Using the result $b=4.50 \mathrm{ft}$, wo have $\left(+M_{R_{A}}=\Sigma M_{A} ; \quad 0=180(12)-40(4.50)\left(a+\frac{4.50}{2}\right)\right.$
$a=9.75 \mathrm{ft}$

Ans

*4-156. Replace the loading by an equivalent resultant force and couple moment acting at point B.
$F_{1}=\frac{1}{2}(6)(50)=1501 \mathrm{~b}$
$F_{i}=(6)(50)=300 \mathrm{Ib}$
$F_{1}=(4)(50)=200 \mathrm{lb}$
$\dot{\rightarrow} F_{h_{s}}=\Sigma F_{s} ; \quad F_{h s}=150 \sin 60^{\circ}+300 \sin 60^{\circ}=389.71 \mathrm{lb}$
$+\downarrow F_{\mathbf{k}}=\Sigma F_{j} ; \quad F_{\mathbf{R}}=150 \cos 60^{\circ}+300 \cos 60^{\circ}+200=425 \mathrm{lb}$
$F_{1}=\sqrt{(389.71)^{2}+(425)^{2}}=577 \mathrm{lb} \quad$ Ans
$\theta=\operatorname{man}^{-1}\left(\frac{425}{389.71}\right)=47.5^{\circ} \quad \boldsymbol{F A n s}^{\text {Ans }}$
$\left(+M_{R s}=\Sigma M_{B}: \quad M_{a s}=150 \cos 60^{\circ}\left(4 \cos 60^{\circ}+4\right)+150 \sin 60^{\circ}\left(4 \sin 60^{\circ}\right)\right.$
$+300 \cos 60^{\circ}\left(3 \cos 60^{\circ}+4\right)+300 \sin 60^{\circ}\left(3 \sin 60^{\circ}\right)+200(2)$
$M_{\text {kt }}=2800 \mathrm{lb} \cdot \mathrm{ft}=2.80 \mathrm{kip} \cdot \mathrm{ft} \boldsymbol{f}$ Ans

*4-168. Determine the magnitude of the moment of the force \mathbf{F}_{C} about the hinged axis $a a$ of the door.

$$
\begin{aligned}
\mathrm{r}_{A B} & =\{[-0.5-(-0.5)] \mathrm{i}+[0-(-1)] \mathrm{j}+(0-0) \mathrm{k}\} \mathrm{m}=\{1 \mathrm{j}\} \mathrm{m} \\
\mathrm{~F}_{C} & =250\left(\frac{[-0.5-(-2.5)] i+\left\{0-\left[-\left(1+1.5 \cos 30^{\circ}\right)\right]\right\} \mathrm{j}+\left(0-1.5 \sin 30^{\circ}\right) \mathbf{k}}{\sqrt{[1-0.5-(-2.5)]^{2}+\left\{0-\left[-\left(1+1.5 \cos 30^{\circ}\right)\right]\right\}^{2}+\left(0-1.5 \sin 30^{\circ}\right)^{2}}}\right) \mathrm{N} \\
& =\{159.33 \mathrm{i}+183.15 \mathrm{j}-59.75 \mathrm{k}\} \mathrm{N}
\end{aligned}
$$

Moment of Force \mathbf{F}_{C} About a-aAxis : The unit vector along the $a-a$ axis is \mathbf{i}. Appiying Eq.4-11, we have

$$
\begin{aligned}
M_{c-a} & =i \cdot\left(\mathbf{r}_{A B} \times \mathbf{F}_{C}\right) \\
& =\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
159.33 & 183.15 & -59.75
\end{array}\right| \\
& =1[1(-59.75)-(183.15)(0)]-0+0 \\
& =-59.7 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

The negative sign indicates that M_{a-a} is directed toward negative x axis.
 $\mathrm{M}_{\mathrm{a}-\mathrm{e}}=59.7 \mathrm{~N} \cdot \mathrm{~m}$
-5-1. Draw the free-body diagram of the $50-\mathrm{kg}$ paper roll which has a center of mass at G and rests on the smooth blade of the paper hauler. Explain the significance of each force acting on the diagram. (See Fig. 5-7b.)

The Significance of Each Force:

W is the effece of gravity (weight) on the paper roll.
N_{A} and N_{B} are the smooth blade reactions on the paper roll.

5-7. Draw the free-body diagram of the "spanner wrench" subjected to the $20-\mathrm{lb}$ force. The support at A can be considered a pin, and the surface of contact at B is smooth. Explain the significance of each force on the diagram. (See Fig. 5-7b.)

A_{z}, A_{3}, N_{B} force of cylinder on wrench.

