Derivation of the Energy Equation
ME 7710 — Environmental Fluid Dynamics
Spring 2013

This derivation follows closely from Bird, Stewart and Lightfoot (1960) but has been
extended to include radiation and phase change. We can write the 1* law of

thermodynamics for an open unsteady system shown in the figure below in words as
follows:
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Figure 1: Schematic of a fluid element used for deriving the energy equation.



1. Rate of Accumulation of Internal (e) and Kinetic Energy (V'* /2) within the
element:
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2. Net rate of Advection of Internal and Kinetic Energy into the volume element:
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3. Net rate of Energy input by Conduction into the volume element (molecular):
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4. Net rate of Energy input by Radiation into the volume element:
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5. Net rate of Energy input by Phase Change into the volume element (Note that this
is a Body Source term).
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Where L, (2.45x10° I kg'') is the latent heat of vaporization or condensation and E (kg m’
? 5™ is the evaporation rate or condensation rate per unit volume.

6. Net rate of Work done by the fluid element against the surroundings.
Recall, that work rate done by a force is the magnitude of the force multiplied by the
velocity in the direction of the force, W = F' -V, we will write the work rates as forces
multiplied by velocities acting on our fluid element.

a. Work Against Body Forces — Rate of doing work against the gravitational
force

AxAyAz(pug , + pvg, + pwg. ) (6)
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Figure 2: Fluid element volume indicating the stress sign convention for the derivation.
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Combining Eqs (1-8), dividing by AxAyAzand taking the limit as Ax — 0, Ay — 0, and
Az — 0yields the complete energy equation
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As with the derivation of the momentum equation we now utilize Newtonian expressions
to relate the velocity gradients and stresses, namely
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or more compactly this may be written,
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We now subtract the Kinetic Energy equation (derived early in the course) from the
complete energy equation to yield the Thermal Energy Equation:
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Term Physical interpretation of each term

! Rate of Gain of internal energy per unit volume

1l Rate of internal energy input by Conduction per unit volume

111 Reversible rate of internal energy increase per unit volume by Compression

v Rate of internal energy input by Net Radiation per unit volume

V Rate of internal energy input by Phase Change

Vi Irreversible rate of internal energy increase per unit volume by Viscous
Dissipation

The viscous term written out in full is
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We would now like to express the Equation of Thermal Energy in terms of temperature
and heat capacity rather than internal energy:

Recall from thermodynamics, that e = e(a, T ), where « is the specific volume and 7 the
absolute temperature. Thus,
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multiplying by the density and considering the substantial derivatives
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where C| is the specific heat of the fluid at constant volume. Writing the specific volume
as the inverse of the density and using the product rule of calculus,
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Then for incompressible flow where V-7 =, we have

Pcv%z—V~§—V-Rn+LVE+u®'V (10)

where the viscous dissipation term simplifies to
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for incompressible flow.

Using Fourier’s Law of Heat Conduction allows us to write term /7 of Eq. (9) in terms of

temperature,
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where £ is the thermal conductivity of the fluid. Thus,

~-V-G=kV-VT =kV’T
Substituting in Eq. (10) gives us an equation for the change in temperature,

pCV%=kV2T—V-Rn—LvE+uCD'V (11)

This equation yields temperature changes from:
1. Heat conduction
2. Radiation divergence
3. Phase change
4. Viscous heating

For a constant pressure fluid we can make the following substitution

de=-pdo+C,dT
which for an incompressible fluid leads to
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which is essentially stating that we can switch C, and C . This justified when the
pressure terms are neglected in a gas flow energy equation. What remains is

approximately an enthalpy change.
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If viscous heating is small and we define thermal diffusivity as K = E
p
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