Derivation of the Energy Equation ME 7710 – Environmental Fluid Dynamics Spring 2013 This derivation follows closely from Bird, Stewart and Lightfoot (1960) but has been extended to include radiation and phase change. We can write the 1st law of thermodynamics for an open unsteady system shown in the figure below in words as follows: Figure 1: Schematic of a fluid element used for deriving the energy equation. 1. Rate of Accumulation of Internal (e) and Kinetic Energy ($V^2/2$) within the element: $$\Delta x \Delta y \Delta z \frac{\partial}{\partial t} \left(\rho e + \rho V^2 / 2 \right) \tag{1}$$ 2. Net rate of Advection of Internal and Kinetic Energy into the volume element: $$\Delta y \Delta z \left\{ u \left(\rho e + \rho V^{2} / 2 \right)_{x + \Delta x} - u \left(\rho e + \rho V^{2} / 2 \right)_{x} \right\} + \Delta x \Delta z \left\{ v \left(\rho e + \rho V^{2} / 2 \right)_{y + \Delta x} - v \left(\rho e + \rho V^{2} / 2 \right)_{y} \right\} + \Delta x \Delta y \left\{ w \left(\rho e + \rho V^{2} / 2 \right)_{z + \Delta z} - w \left(\rho e + \rho V^{2} / 2 \right)_{z} \right\}$$ (2) 3. Net rate of Energy input by Conduction into the volume element (molecular): $$\Delta y \Delta z \left(q_x \big|_x - q_x \big|_{x + \Delta x} \right) + \Delta x \Delta z \left(q_y \big|_y - q_y \big|_{y + \Delta y} \right) + \Delta x \Delta y \left(q_z \big|_z - q_z \big|_{z + \Delta z} \right) \tag{3}$$ 4. Net rate of Energy input by Radiation into the volume element: $$\Delta y \Delta z \left(R n_x \big|_x - R n_x \big|_{x + \Delta x} \right) + \Delta x \Delta z \left(R n_y \big|_y - R n_y \big|_{y + \Delta y} \right) + \Delta x \Delta y \left(R n_z \big|_z - R n_z \big|_{z + \Delta z} \right) \tag{4}$$ 5. <u>Net rate of Energy input by Phase Change</u> into the volume element (Note that this is a Body Source term). $$\Delta x \Delta y \Delta z (L_{\nu} E) \tag{5}$$ Where L_{ν} (2.45x10⁶ J kg⁻¹) is the latent heat of vaporization or condensation and E (kg m⁻³ s⁻¹) is the evaporation rate or condensation rate per unit volume. - 6. Net rate of Work done by the fluid element against the surroundings. Recall, that work rate done by a force is the magnitude of the force multiplied by the velocity in the direction of the force, $\vec{W} = \vec{F} \cdot \vec{V}$, we will write the work rates as forces multiplied by velocities acting on our fluid element. - a. Work Against Body Forces Rate of doing work against the gravitational force $$\Delta x \Delta y \Delta z \left(\rho u g_x + \rho v g_y + \rho w g_z \right) \tag{6}$$ Figure 2: Fluid element volume indicating the stress sign convention for the derivation. $$\Delta y \Delta z \left\{ \left(\tau_{xx} u + \tau_{xy} v + \tau_{xz} w \right)_{x} - \left(\tau_{xx} u + \tau_{xy} v + \tau_{xz} w \right)_{x+\Delta x} \right\} + \Delta x \Delta z \left\{ \left(\tau_{yx} u + \tau_{yy} v + \tau_{yz} w \right)_{y} - \left(\tau_{yx} u + \tau_{yy} v + \tau_{yz} w \right)_{y+\Delta y} \right\} + \Delta x \Delta y \left\{ \left(\tau_{zx} u + \tau_{zy} v + \tau_{zz} w \right)_{z} - \left(\tau_{zx} u + \tau_{zy} v + \tau_{zz} w \right)_{z+\Delta z} \right\}$$ (8) Combining Eqs (1-8), dividing by $\Delta x \Delta y \Delta z$ and taking the limit as $\Delta x \to 0$, $\Delta y \to 0$, and $\Delta z \to 0$ yields the complete energy equation $$\frac{\partial}{\partial t} \left(\rho e + \rho V^{2} / 2 \right) = -\left(\frac{\partial}{\partial x} u \left(\rho e + \rho V^{2} / 2 \right) + \frac{\partial}{\partial y} v \left(\rho e + \rho V^{2} / 2 \right) + \frac{\partial}{\partial z} w \left(\rho e + \rho V^{2} / 2 \right) \right) \\ - \left(\frac{\partial}{\partial x} q_{x} + \frac{\partial}{\partial y} q_{y} + \frac{\partial}{\partial z} q_{z} \right) - \left(\frac{\partial}{\partial x} p u + \frac{\partial}{\partial y} p v + \frac{\partial}{\partial z} p w \right) - \left(\frac{\partial}{\partial x} R n_{x} + \frac{\partial}{\partial y} R n_{y} + \frac{\partial}{\partial z} R n_{z} \right) \\ + \rho \left(u g_{x} + v g_{y} + w g_{z} \right) - L_{p} E \\ - \left(\frac{\partial}{\partial x} \left(\tau_{xx} u + \tau_{yx} v + \tau_{zx} w \right) + \frac{\partial}{\partial y} \left(\tau_{xy} u + \tau_{yy} v + \tau_{zy} w \right) + \frac{\partial}{\partial z} \left(\tau_{xz} u + \tau_{yz} v + \tau_{zz} w \right) \right)$$ As with the derivation of the momentum equation we now utilize Newtonian expressions to relate the velocity gradients and stresses, namely $$\tau_{xx} = -2\mu \frac{\partial u}{\partial x} + \frac{2}{3}\mu \left(\nabla \cdot \vec{V}\right) \qquad \tau_{xy} = \tau_{yx} = -\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)$$ $$\tau_{yy} = -2\mu \frac{\partial v}{\partial y} + \frac{2}{3}\mu \left(\nabla \cdot \vec{V}\right) \qquad \tau_{xz} = \tau_{zx} = -\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)$$ $$\tau_{zz} = -2\mu \frac{\partial w}{\partial z} + \frac{2}{3}\mu \left(\nabla \cdot \vec{V}\right) \qquad \tau_{zy} = \tau_{yz} = -\mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}\right)$$ or more compactly this may be written, $$\tau_{ij} = -2\mu S_{ij} + \frac{2}{3}\mu (\nabla \cdot \vec{V}) \delta_{ij}$$ We now subtract the Kinetic Energy equation (derived early in the course) from the complete energy equation to yield the <u>Thermal Energy Equation</u>: $$\underline{\rho} \underbrace{\frac{De}{Dt}}_{I} = \underbrace{-\nabla \cdot \vec{q}}_{II} - \underbrace{p(\nabla \cdot \vec{V})}_{III} - \underbrace{\nabla \cdot \vec{R}_{n}}_{IV} + \underbrace{L_{v}E}_{V} + \underbrace{\mu \Phi_{v}}_{VI}$$ (9) | Term | Physical interpretation of each term | |------|---| | I | Rate of Gain of internal energy per unit volume | | II | Rate of internal energy input by Conduction per unit volume | | III | Reversible rate of internal energy increase per unit volume by Compression | | IV | Rate of internal energy input by Net Radiation per unit volume | | V | Rate of internal energy input by Phase Change | | VI | Irreversible rate of internal energy increase per unit volume by Viscous | | | Dissipation | The viscous term written out in full is $$\begin{split} & \Phi_{v} = -2 \Bigg[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial v}{\partial y} \right)^{2} + \left(\frac{\partial w}{\partial z} \right)^{2} \Bigg] + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^{2} + \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)^{2} + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^{2} \\ & + \frac{2}{3} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right)^{2} \\ & \text{or,} \\ & \Phi_{v} = -2 \mu S_{ij} S_{ij} + \frac{2}{3} \mu \left(\nabla \cdot \vec{V} \right)^{2}. \end{split}$$ We would now like to express the Equation of Thermal Energy in terms of temperature and heat capacity rather than internal energy: Recall from thermodynamics, that $e = e(\alpha, T)$, where α is the specific volume and T the absolute temperature. Thus, $$de = \left(\frac{\partial e}{\partial \alpha}\right)_{T} d\alpha + \left(\frac{\partial e}{\partial T}\right)_{\alpha} dT$$ multiplying by the density and considering the substantial derivatives $$\rho \frac{De}{Dt} = \left(\frac{\partial e}{\partial \alpha}\right)_{T} \rho \frac{D\alpha}{Dt} + \rho C_{v} \frac{DT}{Dt}$$ where C_{ν} is the specific heat of the fluid at constant volume. Writing the specific volume as the inverse of the density and using the product rule of calculus, $$\rho \frac{D\alpha}{Dt} = \rho \frac{D}{Dt} \left(\frac{1}{\rho} \right) = -\frac{1}{\rho} \frac{D\rho}{Dt} = -\frac{1}{\rho} \nabla \cdot \vec{V}$$ Then for incompressible flow where $\nabla \cdot \vec{V} = 0$, we have $$\rho C_{v} \frac{DT}{Dt} = -\nabla \cdot \vec{q} - \nabla \cdot \vec{R}_{n} + L_{v}E + \mu \Phi'_{v}$$ (10) where the viscous dissipation term simplifies to $$\Phi_{v} = -2\left[\left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial y}\right)^{2} + \left(\frac{\partial w}{\partial z}\right)^{2}\right] + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}\right)^{2} + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)^{2}$$ or $$\Phi_{v} = -2\mu S_{ij} S_{ij}$$ for incompressible flow. Using Fourier's Law of Heat Conduction allows us to write term II of Eq. (9) in terms of temperature, $$q_x = -k \frac{dT}{dx}$$ $$\vec{q} = -k\nabla T$$ where *k* is the thermal conductivity of the fluid. Thus, $$-\nabla \cdot \vec{q} = k\nabla \cdot \nabla T = k\nabla^2 T$$ Substituting in Eq. (10) gives us an equation for the change in temperature, $$\rho C_{\nu} \frac{DT}{Dt} = k \nabla^2 T - \nabla \cdot \vec{R}_n - L_{\nu} E + \mu \Phi'_{\nu}$$ (11) This equation yields temperature changes from: - 1. Heat conduction - 2. Radiation divergence - 3. Phase change - 4. Viscous heating For a constant pressure fluid we can make the following substitution $$de = -pd\alpha + C_p dT$$ which for an incompressible fluid leads to $$\rho C_p \frac{DT}{Dt} = k \nabla^2 T - \nabla \cdot \vec{R}_n + L_v E + \mu \Phi'_v$$ which is essentially stating that we can switch C_{ν} and C_{p} . This justified when the pressure terms are neglected in a gas flow energy equation. What remains is approximately an enthalpy change. $$\frac{DT}{Dt} = \frac{k}{\rho C_p} \nabla^2 T - \frac{1}{\rho C_p} \nabla \cdot \vec{R}_n + \frac{L_v E}{\rho C_p} + \frac{\mu \Phi'_v}{\rho C_p}$$ If viscous heating is small and we define thermal diffusivity as $K = \frac{k}{\rho C_p}$ $$\frac{DT}{Dt} = K\nabla^2 T - \frac{1}{\rho C_p} \nabla \cdot \vec{R}_n + \frac{L_\nu E}{\rho C_p}$$