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Derivation of the Energy Equation  
ME 7710 – Environmental Fluid Dynamics 
Spring 2013 
 
This derivation follows closely from Bird, Stewart and Lightfoot (1960) but has been 
extended to include radiation and phase change. We can write the 1st law of 
thermodynamics for an open unsteady system shown in the figure below in words as 
follows: 
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Figure 1: Schematic of a fluid element used for deriving the energy equation. 
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1. Rate of Accumulation of Internal (e) and Kinetic Energy ( 2/2V ) within the 
element: 

 

( )2/2Ve
t

zyx ρρ +
∂
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2. Net rate of Advection of Internal and Kinetic Energy into the volume element: 
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3. Net rate of Energy input by Conduction into the volume element (molecular): 
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4. Net rate of Energy input by Radiation into the volume element: 
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5. Net rate of Energy input by Phase Change into the volume element (Note that this 

is a Body Source term). 
 
ΔxΔyΔz LvE( )          (5) 
 
Where Lv (2.45x106 J kg-1) is the latent heat of vaporization or condensation and E (kg m-

3 s-1) is the evaporation rate or condensation rate per unit volume. 
 
 

6. Net rate of Work done by the fluid element against the surroundings. 
Recall, that work rate done by a force is the magnitude of the force multiplied by the 
velocity in the direction of the force, VFW

 ⋅= , we will write the work rates as forces 
multiplied by velocities acting on our fluid element. 
 

a. Work Against Body Forces – Rate of doing work against the gravitational 
force 
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b. Work Against Surfaces Forces 
 

i. Rate of Doing work against the Pressure at the six faces of a 
volume element 

 
( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
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Note that here we are considering our work rate to be ( ) VdAnp
 ⋅⋅  where n  is the 

outwardly pointing normal vector from the fluid element. 
 

ii. Rate of doing Work Against the Viscous Forces 

 
Figure 2: Fluid element volume indicating the stress sign convention for the derivation. 
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Combining Eqs (1-8), dividing by zyx ΔΔΔ and taking the limit as 0→Δx , 0→Δy , and 

0→Δz yields the complete energy equation 
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As with the derivation of the momentum equation we now utilize Newtonian expressions 
to relate the velocity gradients and stresses, namely 
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or more compactly this may be written, 

τ ij = −2µSij +
2
3
µ ∇⋅


V( )δ ij  
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We now subtract the Kinetic Energy equation (derived early in the course) from the 
complete energy equation to yield the Thermal Energy Equation:  
 

ρ De
Dt
I


= −∇⋅ q
II
 − p ∇⋅


V( )

III
 

−∇⋅

Rn

IV
 + LvE

V
 + µΦv

VI
      (9) 

 
Term Physical interpretation of each term 
I Rate of Gain of internal energy per unit volume 
II Rate of internal energy input by Conduction per unit volume 
III Reversible rate of internal energy increase per unit volume by Compression 
IV Rate of internal energy input by Net Radiation per unit volume 
V Rate of internal energy input by Phase Change 
VI Irreversible rate of internal energy increase per unit volume by Viscous 

Dissipation  
 
The viscous term written out in full is 
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∂x

⎛
⎝⎜

⎞
⎠⎟
2

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂w
∂z

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ∂v

∂x
+ ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂w
∂y

+ ∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂z

+ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟
2

+ 2
3

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

⎛
⎝⎜

⎞
⎠⎟

2
 

or, 

Φv = −2µSijSij +
2
3
µ ∇⋅


V( )2 . 

 
 
We would now like to express the Equation of Thermal Energy in terms of temperature 
and heat capacity rather than internal energy: 
 
Recall from thermodynamics, that ( )Tee ,α= , where α is the specific volume and T the 
absolute temperature. Thus, 
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multiplying by the density and considering the substantial derivatives 
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where vC is the specific heat of the fluid at constant volume. Writing the specific volume 
as the inverse of the density and using the product rule of calculus, 
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Then for incompressible flow where 0=⋅∇ V


, we have 

 

ρCv
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where the viscous dissipation term simplifies to 

Φv = −2 ∂u
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or 
Φv = −2µSijSij  
for incompressible flow. 
 
 
Using Fourier’s Law of Heat Conduction allows us to write term II of Eq. (9) in terms of 
temperature, 

qx = −k dT
dx

q = −k∇T
 

where k is the thermal conductivity of the fluid. Thus, 
 
−∇⋅ q = k∇⋅∇T = k∇2T  
Substituting in Eq. (10) gives us an equation for the change in temperature, 
 

ρCv
DT
Dt

= k∇2T −∇⋅

Rn − LvE + µΦ 'v       (11) 

 
This equation yields temperature changes from: 

1. Heat conduction 
2. Radiation divergence 
3. Phase change 
4. Viscous heating 

 
 
For a constant pressure fluid we can make the following substitution 
 

dTCpdde p+−= α  
which for an incompressible fluid leads to  
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ρCp
DT
Dt

= k∇2T −∇⋅

Rn + LvE + µΦ 'v  

which is essentially stating that we can switch vC  and pC . This justified when the 
pressure terms are neglected in a gas flow energy equation. What remains is 
approximately an enthalpy change. 
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If viscous heating is small and we define thermal diffusivity as 
pC
kK

ρ
=  
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