Derivation of the Energy Equation

ME 7710 - Environmental Fluid Dynamics
Spring 2013
This derivation follows closely from Bird, Stewart and Lightfoot (1960) but has been extended to include radiation and phase change. We can write the $1^{\text {st }}$ law of thermodynamics for an open unsteady system shown in the figure below in words as follows:

$+\underbrace{\left\{\begin{array}{l}\text { net rate of } \\ \text { heat added by } \\ \text { Conduction }\end{array}\right.}_{3}\}+\underbrace{\left\{\begin{array}{l}\text { net rate of } \\ \text { heat added by } \\ \text { Radiation }\end{array}\right.}_{4}\}+\underbrace{\left\{\begin{array}{l}\text { net rate of } \\ \text { heat added by } \\ \text { Phase Change }\end{array}\right.}_{5}\}-\underbrace{\left\{\begin{array}{l}\text { net rate of Work } \\ \text { done by the fluid } \\ \text { element on surroundings }\end{array}\right.}_{6}\}$

Figure 1: Schematic of a fluid element used for deriving the energy equation.

1. Rate of Accumulation of Internal (e) and Kinetic Energy $\left(V^{2} / 2\right)$ within the element:

$$
\begin{equation*}
\Delta x \Delta y \Delta z \frac{\partial}{\partial t}\left(\rho e+\rho V^{2} / 2\right) \tag{1}
\end{equation*}
$$

2. Net rate of Advection of Internal and Kinetic Energy into the volume element:

$$
\begin{align*}
& \Delta y \Delta z\left\{u\left(\rho e+\rho V^{2} / 2\right)_{x+\Delta x}-u\left(\rho e+\rho V^{2} / 2\right)_{x}\right\} \\
& +\Delta x \Delta z\left\{v\left(\rho e+\rho V^{2} / 2\right)_{y+\Delta x}-v\left(\rho e+\rho V^{2} / 2\right)_{y}\right\} \tag{2}\\
& +\Delta x \Delta y\left\{w\left(\rho e+\rho V^{2} / 2\right)_{z+\Delta z}-w\left(\rho e+\rho V^{2} / 2\right)_{z}\right\}
\end{align*}
$$

3. Net rate of Energy input by Conduction into the volume element (molecular):

$$
\begin{equation*}
\Delta y \Delta z\left(\left.q_{x}\right|_{x}-\left.q_{x}\right|_{x+\Delta x}\right)+\Delta x \Delta z\left(\left.q_{y}\right|_{y}-\left.q_{y}\right|_{y+\Delta y}\right)+\Delta x \Delta y\left(\left.q_{z}\right|_{z}-\left.q_{z}\right|_{z+\Delta z}\right) \tag{3}
\end{equation*}
$$

4. Net rate of Energy input by Radiation into the volume element:

$$
\begin{equation*}
\Delta y \Delta z\left(\left.R n_{x}\right|_{x}-\left.R n_{x}\right|_{x+\Delta x}\right)+\Delta x \Delta z\left(\left.R n_{y}\right|_{y}-\left.R n_{y}\right|_{y+\Delta y}\right)+\Delta x \Delta y\left(\left.R n_{z}\right|_{z}-\left.R n_{z}\right|_{z+\Delta z}\right) \tag{4}
\end{equation*}
$$

5. Net rate of Energy input by Phase Change into the volume element (Note that this is a Body Source term).
$\Delta x \Delta y \Delta z\left(L_{v} E\right)$
Where $L_{v}\left(2.45 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}\right)$ is the latent heat of vaporization or condensation and $E\left(\mathrm{~kg} \mathrm{~m}^{-}\right.$ ${ }^{3} \mathrm{~s}^{-1}$) is the evaporation rate or condensation rate per unit volume.
6. Net rate of Work done by the fluid element against the surroundings.

Recall, that work rate done by a force is the magnitude of the force multiplied by the velocity in the direction of the force, $\dot{W}=\vec{F} \cdot \vec{V}$, we will write the work rates as forces multiplied by velocities acting on our fluid element.
a. Work Against Body Forces - Rate of doing work against the gravitational force
$\Delta x \Delta y \Delta z\left(\rho u g_{x}+\rho v g_{y}+\rho w g_{z}\right)$

Figure 2: Fluid element volume indicating the stress sign convention for the derivation.
$\Delta y \Delta z\left\{\left(\tau_{x x} u+\tau_{x y} v+\tau_{x z} w\right)_{x}-\left(\tau_{x x} u+\tau_{x y} v+\tau_{x z} w\right)_{x+\Delta x}\right\}$
$+\Delta x \Delta z\left\{\left(\tau_{y x} u+\tau_{y y} v+\tau_{y z} w\right)_{y}-\left(\tau_{y x} u+\tau_{y y} v+\tau_{y z} w\right)_{y+\Delta y}\right\}$
$+\Delta x \Delta y\left\{\left(\tau_{z x} u+\tau_{z y} v+\tau_{z z} w\right)_{z}-\left(\tau_{z x} u+\tau_{z y} v+\tau_{z z} w\right)_{z+\Delta z}\right\}$
Combining Eqs (1-8), dividing by $\Delta x \Delta y \Delta z$ and taking the limit as $\Delta x \rightarrow 0, \Delta y \rightarrow 0$, and $\Delta z \rightarrow 0$ yields the complete energy equation

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\rho e+\rho V^{2} / 2\right)=-\left(\frac{\partial}{\partial x} u\left(\rho e+\rho V^{2} / 2\right)+\frac{\partial}{\partial y} v\left(\rho e+\rho V^{2} / 2\right)+\frac{\partial}{\partial z} w\left(\rho e+\rho V^{2} / 2\right)\right) \\
& -\left(\frac{\partial}{\partial x} q_{x}+\frac{\partial}{\partial y} q_{y}+\frac{\partial}{\partial z} q_{z}\right)-\left(\frac{\partial}{\partial x} p u+\frac{\partial}{\partial y} p v+\frac{\partial}{\partial z} p w\right)-\left(\frac{\partial}{\partial x} R n_{x}+\frac{\partial}{\partial y} R n_{y}+\frac{\partial}{\partial z} R n_{z}\right) \\
& +\rho\left(u g_{x}+v g_{y}+w g_{z}\right)-L_{p} E \\
& -\left(\frac{\partial}{\partial x}\left(\tau_{x x} u+\tau_{y x} v+\tau_{z x} w\right)+\frac{\partial}{\partial y}\left(\tau_{x y} u+\tau_{y y} v+\tau_{z y} w\right)+\frac{\partial}{\partial z}\left(\tau_{x z} u+\tau_{y z} v+\tau_{z z} w\right)\right)
\end{aligned}
$$

As with the derivation of the momentum equation we now utilize Newtonian expressions to relate the velocity gradients and stresses, namely

$$
\begin{array}{ll}
\tau_{x x}=-2 \mu \frac{\partial u}{\partial x}+\frac{2}{3} \mu(\nabla \cdot \vec{V}) & \tau_{x y}=\tau_{y x}=-\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \\
\tau_{y y}=-2 \mu \frac{\partial v}{\partial y}+\frac{2}{3} \mu(\nabla \cdot \vec{V}) & \tau_{x z}=\tau_{z x}=-\mu\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right) \\
\tau_{z z}=-2 \mu \frac{\partial w}{\partial z}+\frac{2}{3} \mu(\nabla \cdot \vec{V}) & \tau_{z y}=\tau_{y z}=-\mu\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right)
\end{array}
$$

or more compactly this may be written,
$\tau_{i j}=-2 \mu S_{i j}+\frac{2}{3} \mu(\nabla \cdot \vec{V}) \delta_{i j}$

We now subtract the Kinetic Energy equation (derived early in the course) from the complete energy equation to yield the Thermal Energy Equation:
$\underbrace{\rho \frac{D e}{D t}}_{I}=\underbrace{-\nabla \cdot \vec{q}}_{I I}-\underbrace{p(\nabla \cdot \vec{V})}_{I I I}-\underbrace{\nabla \cdot \vec{R}_{n}}_{I V}+\underbrace{L_{v} E}_{V}+\underbrace{\mu \Phi_{v}}_{V I}$

Term	Physical interpretation of each term
I	Rate of Gain of internal energy per unit volume
$I I$	Rate of internal energy input by Conduction per unit volume
$I I I$	Reversible rate of internal energy increase per unit volume by Compression
$I V$	Rate of internal energy input by Net Radiation per unit volume
V	Rate of internal energy input by Phase Change
$V I$	Irreversible rate of internal energy increase per unit volume by Viscous Dissipation

The viscous term written out in full is
$\Phi_{v}=-2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}\right]+\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right)^{2}+\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)^{2}$
$+\frac{2}{3}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)^{2}$
or,
$\Phi_{v}=-2 \mu S_{i j} S_{i j}+\frac{2}{3} \mu(\nabla \cdot \vec{V})^{2}$.

We would now like to express the Equation of Thermal Energy in terms of temperature and heat capacity rather than internal energy:

Recall from thermodynamics, that $e=e(\alpha, T)$, where α is the specific volume and T the absolute temperature. Thus,
$d e=\left(\frac{\partial e}{\partial \alpha}\right)_{T} d \alpha+\left(\frac{\partial e}{\partial T}\right)_{\alpha} d T$
multiplying by the density and considering the substantial derivatives
$\rho \frac{D e}{D t}=\left(\frac{\partial e}{\partial \alpha}\right)_{T} \rho \frac{D \alpha}{D t}+\rho C_{v} \frac{D T}{D t}$
where C_{v} is the specific heat of the fluid at constant volume. Writing the specific volume as the inverse of the density and using the product rule of calculus,
$\rho \frac{D \alpha}{D t}=\rho \frac{D}{D t}\left(\frac{1}{\rho}\right)=-\frac{1}{\rho} \frac{D \rho}{D t}=-\frac{1}{\rho} \nabla \cdot \vec{V}$
Then for incompressible flow where $\nabla \cdot \vec{V}=0$, we have
$\rho C_{v} \frac{D T}{D t}=-\nabla \cdot \vec{q}-\nabla \cdot \vec{R}_{n}+L_{v} E+\mu \Phi_{v}{ }_{v}$
where the viscous dissipation term simplifies to
$\Phi_{v}=-2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}\right]+\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right)^{2}+\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)^{2}$
or
$\Phi_{v}=-2 \mu S_{i j} S_{i j}$
for incompressible flow.

Using Fourier's Law of Heat Conduction allows us to write term $I I$ of Eq. (9) in terms of temperature,
$q_{x}=-k \frac{d T}{d x}$
$\vec{q}=-k \nabla T$
where k is the thermal conductivity of the fluid. Thus,
$-\nabla \cdot \vec{q}=k \nabla \cdot \nabla T=k \nabla^{2} T$
Substituting in Eq. (10) gives us an equation for the change in temperature,
$\rho C_{v} \frac{D T}{D t}=k \nabla^{2} T-\nabla \cdot \vec{R}_{n}-L_{v} E+\mu \Phi^{\prime}{ }_{v}$
This equation yields temperature changes from:

1. Heat conduction
2. Radiation divergence
3. Phase change
4. Viscous heating

For a constant pressure fluid we can make the following substitution
$d e=-p d \alpha+C_{p} d T$
which for an incompressible fluid leads to
$\rho C_{p} \frac{D T}{D t}=k \nabla^{2} T-\nabla \cdot \vec{R}_{n}+L_{v} E+\mu \Phi_{v}^{\prime}$
which is essentially stating that we can switch C_{v} and C_{p}. This justified when the pressure terms are neglected in a gas flow energy equation. What remains is approximately an enthalpy change.
$\frac{D T}{D t}=\frac{k}{\rho C_{p}} \nabla^{2} T-\frac{1}{\rho C_{p}} \nabla \cdot \vec{R}_{n}+\frac{L_{v} E}{\rho C_{p}}+\frac{\mu \Phi_{v}{ }_{v}}{\rho C_{p}}$
If viscous heating is small and we define thermal diffusivity as $K=\frac{k}{\rho C_{p}}$

$$
\frac{D T}{D t}=K \nabla^{2} T-\frac{1}{\rho C_{p}} \nabla \cdot \vec{R}_{n}+\frac{L_{v} E}{\rho C_{p}}
$$

