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Consider the inertial coordinate system xyz with origin O and the non-inertial coordinate 
system ''' zyx  with origin 'O . The ''' zyx  coordinate system is allowed to translate and 
rotate at an angular velocity Ω

r
. A particle P can be identified with respect to the non-

inertial coordinate system by the position vector rr and with respect to the inertial 
coordinate system by the position vector ηr . The position vector rr can be written in terms 
of the non-inertial coordinate system as, 

kzjyixr ˆ'ˆ'ˆ' ++=
r , 
and the position vector of P in the inertial frame is related to the non-inertial position 
vector by 
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The velocity of with respect to the inertial coordinate system is obtained by 
differentiating (1) with respect to time. 
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where, 'OV

r
is the velocity of the non-inertial frame origin. The unit vectors î and ĵ that 

describe rr  are not constant (although there magnitude is) hence, differentiation of rr  
must include differentiating the unit vectors with respect to time also. Doing this yields, 
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Recall from the discussion in class of the centrifugal force that for a constant magnitude 

vector R
r

rotating: R
dt
Rd rr
r

×=ω . Hence, 
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The velocity with respect to the rotating frame is 
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Substituting into (3)(4)(5)(6) into (2) gives 
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or rewriting the cross product terms on the right hand side 
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and substituting kzjyixr ˆ'ˆ'ˆ' ++=
r  yields 
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Substituting (7) into (2) gives the following equation for the velocity in the inertial frame: 

rVVV zyxOxyz
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In words, (8) states: 
 
velocity of P in inertial frame xyz = Velocity or Origin 'O  + Velocity of P in ''' zyx  + 
velocity term associated with rotating coordinate system. 
 
Differentiating (8) with respect to time yields an equation for the acceleration in the 
inertial reference frame xyz, namely 
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Recall, that rr and ''' zyxV

r
 are measured with respect to the rotating frame. Next, (7) is 

differentiated (again giving consideration to the unit vectors) to give 
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Substituting (10) into (9) yields 
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Again substituting equation (7) into the last term in (11) gives, 
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and substituting (12) into (11) yields, 
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Term Physical interpretation of each term 
I Absolute rectilinear acceleration of the particle P relative to the inertial 

coordinates system xyz. 
II Absolute rectilinear acceleration of the non-inertial reference frame ( ''' zyx ) 

relative to the inertial coordinates system xyz. (This will be zero for the earth) 
III Rectilinear acceleration as measured in the non-inertial reference frame 

( ''' zyx ) . 
IV Tangential acceleration due to angular acceleration of the moving reference 

frame. (This will also be zero for the earth) 
V Coriolis acceleration due to motion of a particle in the rotating frame. 
VI Centripetal acceleration due to rotation of the moving fram  



 For the rotating Earth, (13) simplifies to 
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The Centrifugal Force and Newtonian Gravity ( agr ) are usually combined as: 
 

( )rgg a
rrrrr

×Ω×Ω−=          (15) 
 
We will utilize this when we finish deriving the rest of the momentum equation. 
 
The Coriolis Force: '''2 zyxV

rr
×Ω  

• Results in a curved path in a direction opposite to the direction of coordinate 
rotation. 

• Acts perpendicular to the velocity vector. 
• Can only change the direction of travel. 

 
 
From the derivation given in class, the momentum equation given in an inertial reference 
frame is 
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Substituting (14) into (16) yields 
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Substituting (15) into (17) and dropping the R yields the momentum equation for 
velocities measured on the rotating Earth. 
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Note that these notes are based on the material from R.S. Azad’s “The Atmospheric 
Boundary Layer for Engineers,” Klewer (1993). 


