## Derivation of the Momentum Equation in a non-inertial Coordinate System

ME 7710 - Environmental Fluid Dynamics
Spring 2007


Consider the inertial coordinate system $x y z$ with origin $O$ and the non-inertial coordinate system $x^{\prime} y^{\prime} z^{\prime}$ with origin $O^{\prime}$. The $x^{\prime} y^{\prime} z^{\prime}$ coordinate system is allowed to translate and rotate at an angular velocity $\vec{\Omega}$. A particle $P$ can be identified with respect to the noninertial coordinate system by the position vector $\vec{r}$ and with respect to the inertial coordinate system by the position vector $\vec{\eta}$. The position vector $\vec{r}$ can be written in terms of the non-inertial coordinate system as,
$\vec{r}=x^{\prime} \hat{i}+y^{\prime} \hat{j}+z^{\prime} \hat{k}$,
and the position vector of $P$ in the inertial frame is related to the non-inertial position vector by
$\vec{\eta}=\vec{\xi}+\vec{r}$.
The velocity of with respect to the inertial coordinate system is obtained by differentiating (1) with respect to time.
$\vec{V}_{x y z}=\frac{d \vec{\eta}}{d t}=\frac{d \vec{\xi}}{d t}+\frac{d \vec{r}}{d t}=\vec{V}_{O^{\prime}}+\frac{d \vec{r}}{d t}$
where, $\vec{V}_{O}$ is the velocity of the non-inertial frame origin. The unit vectors $\hat{i}$ and $\hat{j}$ that describe $\vec{r}$ are not constant (although there magnitude is) hence, differentiation of $\vec{r}$ must include differentiating the unit vectors with respect to time also. Doing this yields,

$$
\frac{d \vec{r}}{d t}=\frac{d}{d t}\left(x^{\prime} \hat{i}+y^{\prime} \hat{j}+z^{\prime} \hat{k}\right)=\frac{d x^{\prime}}{d t} \hat{i}+x^{\prime} \frac{d \hat{i}}{d t}+\frac{d y^{\prime}}{d t} \hat{j}+y^{\prime} \frac{d \hat{j}}{d t}+\frac{d z^{\prime}}{d t} \hat{k}+z^{\prime} \frac{d \hat{k}}{d t}
$$

Recall from the discussion in class of the centrifugal force that for a constant magnitude vector $\vec{R}$ rotating: $\frac{d \vec{R}}{d t}=\vec{\omega} \times \vec{R}$. Hence,
$x^{\prime} \frac{d \hat{i}}{d t}=x^{\prime}(\vec{\Omega} \times \hat{i})$
and
$y^{\prime} \frac{d \hat{j}}{d t}=y^{\prime}(\vec{\Omega} \times \hat{j})$
and
$z^{\prime} \frac{d \hat{k}}{d t}=z^{\prime}(\vec{\Omega} \times \hat{k})$

The velocity with respect to the rotating frame is
$\vec{V}_{x^{\prime} y^{\prime} z^{\prime}}=\frac{d x^{\prime}}{d t} \hat{i}+\frac{d y^{\prime}}{d t} \hat{j}+\frac{d z^{\prime}}{d t} \hat{k}$
Substituting into (3)(4)(5)(6) into (2) gives
$\frac{d \vec{r}}{d t}=\frac{d x^{\prime}}{d t} \hat{i}+\frac{d y^{\prime}}{d t} \hat{j}+\frac{d z^{\prime}}{d t} \hat{k}+x^{\prime}(\vec{\Omega} \times \hat{i})+y^{\prime}(\vec{\Omega} \times \hat{j})+z^{\prime}(\vec{\Omega} \times \hat{k})$
or rewriting the cross product terms on the right hand side
$\frac{d \vec{r}}{d t}=\vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times\left(x^{\prime} \hat{i}+y^{\prime} \hat{j}+z^{\prime} \hat{k}\right)$
and substituting $\vec{r}=x^{\prime} \hat{i}+y^{\prime} \hat{j}+z^{\prime} \hat{k}$ yields
$\frac{d \vec{r}}{d t}=\vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times \vec{r}$.

Substituting (7) into (2) gives the following equation for the velocity in the inertial frame:
$\vec{V}_{x y z}=\vec{V}_{O^{\prime}}+\vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times \vec{r}$,
In words, (8) states:
velocity of $P$ in inertial frame $x y z=$ Velocity or Origin $O^{\prime}+$ Velocity of $P$ in $x^{\prime} y^{\prime} z^{\prime}+$ velocity term associated with rotating coordinate system.

Differentiating (8) with respect to time yields an equation for the acceleration in the inertial reference frame $x y z$, namely

$$
\begin{align*}
& \vec{a}_{x y z}=\frac{d \vec{V}_{x y z}}{d t}=\frac{d}{d t}\left(\vec{V}_{O^{\prime}}+\vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times \vec{r}\right)=\frac{d \vec{V}_{O^{\prime}}}{d t}+\frac{d \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}}{d t}+\frac{d(\vec{\Omega} \times \vec{r})}{d t} \\
& \vec{a}_{x y z}=\vec{a}_{O^{\prime}}+\frac{d \vec{V}_{x^{\prime} y z^{\prime} z^{\prime}}}{d t}+\frac{d \vec{\Omega}}{d t} \times \vec{r}+\vec{\Omega} \times \frac{d \vec{r}}{d t} \tag{9}
\end{align*}
$$

Recall, that $\vec{r}$ and $\vec{V}_{x^{\prime} y^{\prime} z^{\prime}}$ are measured with respect to the rotating frame. Next, (7) is differentiated (again giving consideration to the unit vectors) to give
$\frac{d \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}}{d t}=\vec{a}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}$.
Substituting (10) into (9) yields
$\vec{a}_{x y z}=\vec{a}_{O^{\prime}}+\vec{a}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\frac{d \vec{\Omega}}{d t} \times \vec{r}+\vec{\Omega} \times \frac{d \vec{r}}{d t}$
Again substituting equation (7) into the last term in (11) gives,
$\vec{\Omega} \times \frac{d \vec{r}}{d t}=\vec{\Omega} \times\left(\vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times \vec{r}\right)=\vec{\Omega} \times \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r})$
and substituting (12) into (11) yields,
$\vec{a}_{x y z}=\vec{a}_{O^{\prime}}+\vec{a}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\frac{d \vec{\Omega}}{d t} \times \vec{r}+\vec{\Omega} \times \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r})$

$$
\begin{equation*}
\underbrace{\vec{a}_{x y z}}_{I}=\underbrace{\vec{a}_{O^{\prime}}}_{I I}+\underbrace{\vec{a}_{x^{\prime} y^{\prime} z^{\prime}}}_{I I I}+\underbrace{\frac{d \vec{\Omega}}{d t} \times \vec{r}}_{I V}+\underbrace{2 \vec{\Omega} \times \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}}_{V}+\underbrace{\vec{\Omega} \times(\vec{\Omega} \times \vec{r})}_{V I} \tag{13}
\end{equation*}
$$

| Term | Physical interpretation of each term |
| :--- | :--- |
| $I$ | Absolute rectilinear acceleration of the particle $P$ relative to the inertial <br> coordinates system xyz. |
| II | Absolute rectilinear acceleration of the non-inertial reference frame $\left(x^{\prime} y^{\prime} z^{\prime}\right)$ <br> relative to the inertial coordinates system xyz. (This will be zero for the earth) |
| III | Rectilinear acceleration as measured in the non-inertial reference frame <br> $\left(x^{\prime} y^{\prime} z^{\prime}\right)$. |
| $I V$ | Tangential acceleration due to angular acceleration of the moving reference <br> frame. (This will also be zero for the earth) |
| $V$ | Coriolis acceleration due to motion of a particle in the rotating frame. |
| $V I$ | Centripetal acceleration due to rotation of the moving fram |

For the rotating Earth, (13) simplifies to
$\vec{a}_{x y z}=\vec{a}_{x^{\prime} y^{\prime} z^{\prime}}+2 \vec{\Omega} \times \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r})$
The Centrifugal Force and Newtonian Gravity $\left(\vec{g}_{a}\right)$ are usually combined as:
$\vec{g}=\vec{g}_{a}-\vec{\Omega} \times(\vec{\Omega} \times \vec{r})$
We will utilize this when we finish deriving the rest of the momentum equation.
The Coriolis Force: $2 \vec{\Omega} \times \vec{V}_{x^{\prime} y^{\prime} z^{\prime}}$

- Results in a curved path in a direction opposite to the direction of coordinate rotation.
- Acts perpendicular to the velocity vector.
- Can only change the direction of travel.

From the derivation given in class, the momentum equation given in an inertial reference frame is

$$
\begin{equation*}
\left(\frac{D \vec{V}}{D t}\right)_{I}=-\frac{1}{\rho} \nabla \vec{P}+v \nabla^{2} \vec{V}+\vec{g}_{a} \tag{16}
\end{equation*}
$$

Substituting (14) into (16) yields

$$
\left(\frac{D \vec{V}}{D t}\right)_{R}+2 \vec{\Omega} \times \vec{V}_{R}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r})=-\frac{1}{\rho} \nabla \vec{P}+\nu \nabla^{2} \vec{V}_{R}+\vec{g}_{a}
$$

or

$$
\begin{equation*}
\left(\frac{D \vec{V}}{D t}\right)_{R}=-\frac{1}{\rho} \nabla \vec{P}-2 \vec{\Omega} \times \vec{V}_{R}+\nu \nabla^{2} \vec{V}_{R}+\left(\vec{g}_{a}-\vec{\Omega} \times(\vec{\Omega} \times \vec{r})\right) \tag{17}
\end{equation*}
$$

Substituting (15) into (17) and dropping the $R$ yields the momentum equation for velocities measured on the rotating Earth.

$$
\frac{D \vec{V}}{D t}=-\frac{1}{\rho} \nabla \vec{P}-2 \vec{\Omega} \times \vec{V}+\nu \nabla^{2} \vec{V}+\vec{g}
$$

Note that these notes are based on the material from R.S. Azad’s "The Atmospheric Boundary Layer for Engineers," Klewer (1993).

