Environmental Fluid Dynamics – MEEN 7710 Spring 2011 – Due March 3 Homework #6:

1. Consider the Laminar Ekman layer above a Rigid Surface:

The following simplified momentum equations:

$$-fv = \frac{-1}{\rho} \frac{\partial p}{\partial x} + v \frac{d^2 u}{dz^2}$$
$$fu = \frac{-1}{\rho} \frac{\partial p}{\partial y} + v \frac{d^2 v}{dz^2}$$

can be further simplified by expressing pressure gradients in terms of Geostrophic velocity components as:

$$-f(v-V_g) = v\frac{d^2}{dz^2}(u-U_g)$$
 (1)

$$f(u-U_g) = v\frac{d^2}{dz^2}(v-V_g)$$
 (2)

Assuming U_g and V_g are height independent, solve Equations 1 and 2 subject to the following boundary conditions:

$$u = 0$$
 $v = 0$ at $z = 0$
 $u \to U_g$ $v \to V_g$ as $z \to \infty$

For the final solution, have the x-axis oriented with the Geostrophic wind vector (i.e., $U_g = G$ and $V_g = 0$. Plot your solution as a hodograph and as vertical velocity profiles of u and v. The solution should be: where a is the inverse of the Ekman Depth.

$$u = G\left[1 - e^{-az}\cos(az)\right]$$
$$v = Ge^{-az}\sin(az)$$

- 2. Please explain the phenomena of Eckman pumping.
- 3. Solve problems 1,2 and 3 from Ch.14 of Kundu.