ME 2450 Numerical Methods

Exam 1 Review Notes
You are allowed 1 side of an $81 / 2 \times 11$ sheet of paper for notes
Exam: Monday, March 6, 2006

- Exam 1 will cover Chapters 1-9 through Gauss-Jordan Method
- Students are allowed 1 side of an $81 / 2 \times 11$ sheet of paper for notes

CH. 1 Mathematical Modeling

1. Know concepts:

Dependent Variable $=f$ (indep. variables, system parameters, forcing functions)

$$
v=\frac{g m}{c}\left(1-e^{-c / m t}\right)
$$

2. Conservation Laws

CH. 2 Structured Programming

- Pseudocode
- Flowcharts

Sequence, selection, repetition

CH. 3 Error and Error Estimation

- Significant figures
- Accuracy and Precision

1. Truncation Error - result from an approximation of an exact mathematical procedure (I.e., truncating a Taylor Series expansion)
2. R.O. Error - results from having a limited number of significant figures

- Examples?
- Error definitions
- Normalized
- Absolute
- Relative
- True

3. Integer and Floating Point representation

- How do we represent fractional quanitites?
- Floating point operations
- Addition, subtraction, multiplication (normalizing and chopping)
- Problems:
- smearing
- Subtractive cancellation
- Quantitized errors
- Limited precision
- Large numbers of computations

CH. 4 Taylor Series \& Truncation Error

$$
\begin{gathered}
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}+\frac{f^{\prime} '\left(x_{i}\right) h^{3}}{3!}+\frac{f^{n}\left(x_{i}\right) h^{n}}{n!}+R_{n} \\
R_{n}=\frac{f^{n+1}(\xi) h^{n+1}}{(n+1)!} \\
R_{n}=O\left(h^{n+1}\right)
\end{gathered}
$$

1. Estimating truncation errors with Taylor series
2. Estimating derivatives with Taylor Series

- Backward, Forward and central differencing
- How did we derive them?

3. Error Propagation
a. Functions of one variable $f(x)$, estimating the error in the function.

$$
\Delta f(\tilde{x})=|f(x)-f(\tilde{x})|=\left|f^{\prime}(\tilde{x})\right| \Delta \tilde{x}
$$

Where x is the true value \tilde{X} and an approximate value
b. Functions of multiple variables

$$
\Delta f(\tilde{x}, \tilde{y}, \tilde{z})=\left|\frac{\partial f}{\partial x}\right| \Delta \tilde{x}+\left|\frac{\partial f}{\partial y}\right| \Delta \tilde{y}+\left|\frac{\partial f}{\partial z}\right| \Delta \tilde{z}
$$

Ways to reduce RO and Truncation Error?

CH. 5\&6 Roots of Equations

1. Bracketing Methods - Characteristics?
a) Graphical
b) Bisection

$$
n=\frac{\log \left(\Delta x^{o} / E_{a, d}\right)}{\log 2}
$$

c) False Position Method
2. Open Methods - Characteristics?
a) Fixed Point Iteration (Successive Iteration)

- How do we formulate
- Linear Convergence - the true percent relative error of each iteration is approximately proportional to the error of the previous iteration
b) Newton-Raphson
- Quadratic Convergence - the error is proportional to the square of the previous error

$$
\begin{gathered}
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \\
E_{t, i+1}=O\left(E_{t, i}^{2}\right)
\end{gathered}
$$

- Problems with NR?
c) Secant Method - Finite Difference Approximation for Newton-Raphson method

3. Multiple Roots - functions that are tangent to the x-axis - Modified Newton-Raphson method

CH. 7 Roots of Polynomials

1. Mueller's Method - Involved fitting a $2^{\text {nd }}$ order polynomial to our function and using the intersection with the x-axis as our root estimate

- Allowed for Complex Roots

CH. 8 Engineering Applications
See Notes

Systems of Linear Algebraic Equations

CH. 9 Gauss Elimination $[A]\{x\}=\{b\}$

1. Graphical Method
2. Cramer's Rule
3. Naïve Gauss Elimination

- During the elimination \& back substitution steps division by zero can occur.
- Round-Off Error - "Rule of Thumb" should be ok with < 100 equations
- Ill-conditioned Systems - small changes in the coeff. Matrix result in large changes in the solution. (A wide range of answers can satisfy the equations) an ill conditioned system has D~0
- Singular Systems - no solution or infinite solutions - Scaling -
- Why: it is difficult to determine how close to zero the determinant must be to indicate ill-conditioning. (Also helps with pivoting decisions)
- How: scale each equation so the maximum row element is unity.
- Fast Determinant evaluation using Gauss Elim

$$
D=a_{11} a_{22}^{\prime} a^{\prime}{ }_{33} \ldots a_{n n}^{n-1}
$$

- If $\mathrm{D}=0 \rightarrow$ Singular system

Systems of Linear Algebraic Equations

- Pivoting -
- Why: prevent division by zero or near zero element
- How: Switch pivot row with row containing largest coef. In the element below pivot element.

4. Gauss - Jordan Method: Unknown is eliminated from all equations, not just subsequent rows, all rows are normalized by dividing by the pivot element:

$$
\begin{aligned}
& {[A]\{x\}=\{b\} \Rightarrow[I]\{x\}=\left\{b_{\mathrm{mod}}\right\}} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime}
\end{array}\right\}}
\end{aligned}
$$

