
ME 2450 - Numerical 
Methods

Final Exam Review Notes

•You are allowed 2 sides of 
an 8 ½ x 11 sheet of paper 
for notes

•Exam: Friday, April 28, 
2006 1:00 – 3:00 pm



Systems of Linear Algebraic Equations

[ ]{ } { }bxA =

CH. 10 LU Decomposition
• Best when [A] is fixed but {b} changes

1. LU Decomposition – factor [A] into [L] & [U]
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2. Substitution –

a. [ ]{ } { }⇒= bdL Solve for {d} by forward subs.

b. [ ]{ } { }⇒= dxU Solve for {x} by backward subs.

Note: I have posted a fully worked out example
online



CH. 11 Gauss – Seidel: Iterative Methods
Relaxation – Acceleration of the solution assuming we 

know the direction of the solution.

Typical Range of λ: 0< λ <2
λ = 1 No Relaxation
0< λ <1 Under Relaxation
1< λ <2 Over Relaxation

( ) *1 1 xxx kk λλ +−=+ weighted average
solution

new valueold value

Relaxation coeff

•The optimum value of λ is problem specific 
and usually determined empirically
•For Large numbers of equations that are 
diagonally dominant GS has less Round-Off 
error and reduces unnecessary storage of 0’s



CH. 11 Gauss – Seidel:Iterative Methods

1. Solve Equation (1) for x1, Eq (2) for x2, Eq (3) for x3
2. Start iterative procedure by guessing: xo

1 ,xo
2 ,xo

3
3. Calculate x1

1 from xo
2 ,xo

3
4. Calculate x1

2 from x1
1 ,xo

3
5. Calculate x1

3 from x1
1 ,x1

2
6. Repeat for new x’s
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Convergence Check:
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Sufficient but not necessary
Diagonal Dominance!
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CH. 17 Least Squares Regression

Derive expressions (approximating function) that fits 
the shape of the data (or general trend of the data)

exaay ++= 10

Error or Residual

(A) Straight Line Least-Squares fit

• Find a fit that minimizes the error

Define: “Sum of the Squares” of the Residual
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Minimize Sr and solve for a’s How?

The “Linear Regression” Method produces the best fit 
to the data with:
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CH. 17 Least Squares Regression
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Goodness of fit Statistics for linear regression
1. Standard Deviation: What does it measure?

2. Standard Error Estimate: What does it measure?

3. Coefficient of determination: represents error 
reduction due to using straight line regression 
rather than the average
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CH. 17 Least Squares Regression
(B) Non-Linear Relationships: convert to linear

1. Exponential

2. Power Model

3. Saturation Growth Rate
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(C) Polynomial Regression

• Follow minimization procedure from linear regression

• Solve a system of m+1 equations with standard error:
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(D) Multiple Linear Regression: y is a function of 2 or 
more independent variables 

• Follow minimization procedure from linear regression

• Solve a system of m dimension with standard error:
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CH. 21 Numerical Integration
Integrate data & functions

(A) Newton-Cotes Integration Formula:

Open & Closed Form Methods:

1. Trapazoidal Rule & Error Multiple Application
2. Simpson’s Rule & Error

1. 1/3 Rule for even number of segments
2. 3/8 rule for odd number of segments
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CH. 22 Numerical Integration
(B) Gauss Quadrature Wise positioning of points for 

integration to reduce error

Two Point Guass Legendre formulation
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co,c1 are constants (and unknown)
xo, x1 are unknown Gauss points

We need 4 Eqns. For our 4 unknowns, we choose the 
following polynomials: y=1, y=x, y=x2, y=x3
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Solving we obtain:
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CH. 22 Numerical Integration
(B) Gauss Quadrature Apply 2pt formula to an 

integral of the form:
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To transform the x-locations we use:

Substituting the Gauss points for the 2pt formula we obtain:



CH. 25 Runge-Kutta Methods
• Classification of Differential Equations
• Solution of ODE’s
• Initial Value Problems
• Boundary Value Problems

Solve ODE’s of the form:

),( yxf
dx
dy

=

Numerical Solution form:

hyy ii φ+=+1

Step size

slopeCurrent
value

New
estimate

1. Euler’s Method

hyxfyy iiii ),(1 +=+

• Local truncation error – O(h2)
• Global truncation error – O(h)

Note: I have 
posted handout 
online for 
classification



CH. 25 Runge-Kutta Methods
2. Huen’s Method – Predictor/Corrector

• Predictor Equation

• Corrector Equation

hyxfyy iiii ),(0
1 +=+

• Can be solved iteratively
• Local truncation error – O(h3)
• Global truncation error – O(h2)
•2nd order accurate
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CH. 25 Runge-Kutta Methods
3. 4th order Runge-Kutta

• Can achieve Taylor Series accuracy without 
evaluating higher order derivatives.
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Slope Estimates:

•Note the recursive nature of the k’s
•Recall where coefficients come from
•Global truncation error – O(h4)
•4th order accurate



CH. 25 Runge-Kutta Methods
4. Systems of ODEs

• Higher order ODEs can be broken down 
into a system of first order ODEs that can 
be solved using Runge-Kutta Methods

• Example:
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CH. 27 Boundary Value Problems
1. Shooting Method

• Convert a boundary value problem into 
an initial value problem.

• Solve the problem iteratively

• Linear ODE Approach
• Non-Linear ODE Approach

x

T(x)

z1

z2

Exact



CH. 27 Boundary Value Problems
2. Finite Difference Equations

• Alternative to the shooting method
• Substitute finite difference equations 

for derivatives in the original ODE.
• This will give us a set of simultaneous 

algebraic equations that are solved a 
nodes using techniques like Gauss-
Seidel, LU Decomposition, etc.

• Advantage over shooting method:
• Shooting method can become difficult 

for higher order equations where we 
have to assume two or more conditions



CH. 29 Partial Differential Equations: 
Finite Difference: Elliptical Equations
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Poisson’s equation:

The resulting system of algebraic equations can 
be solved using standard techniques developed 
in Chapters 9-11

Can be written using central differencing as:


