ME 2450 - Numerical Methods

Final Exam Review Notes

- You are allowed 2 sides of an $81 / 2 \times 11$ sheet of paper for notes
-Exam: Friday, April 28, 2006 1:00-3:00 pm

Systems of Linear Algebraic Equations
CH. 10 LU Decomposition

- Best when $[\mathrm{A}]$ is fixed but $\{\mathrm{b}\}$ changes

$$
[A]\{x\}=\{b\}
$$

1. LU Decomposition - factor [A] into [L] \& [U]

$$
\begin{array}{cc}
{[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]} & {[U]=\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]} \\
& {[A]=[L \| U]}
\end{array}
$$

2. Substitution -
a. $[L]\{d\}=\{b\} \Rightarrow \quad$ Solve for $\{\mathrm{d}\}$ by forward subs.
b. $[U]\{x\}=\{d\} \Rightarrow \quad$ Solve for $\{\mathrm{x}\}$ by backward subs.

Note: I have posted a fully worked out example online

CH. 11 Gauss - Seidel: Iterative Methods

Relaxation - Acceleration of the solution assuming we know the direction of the solution.

$$
x^{k+1}=(1-\lambda) x^{k}+\underbrace{\text { Relaxation coeff }}_{\text {old value }} \sum_{\text {new value }}^{*}\} \begin{aligned}
& \text { weighted average } \\
& \text { solution }
\end{aligned}
$$

Typical Range of λ : $0<\lambda<2$

$$
\begin{aligned}
& \lambda=1 \rightarrow \text { No Relaxation } \\
& 0<\lambda<1 \rightarrow \text { Under Relaxation } \\
& 1<\lambda<2 \rightarrow \text { Over Relaxation }
\end{aligned}
$$

-The optimum value of λ is problem specific and usually determined empirically

- For Large numbers of equations that are diagonally dominant GS has less Round-Off error and reduces unnecessary storage of 0's

CH. 11 Gauss - Seidel:Iterative Methods $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]\left\{\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\}=\left\{\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right\}$

1. Solve Equation (1) for x_{1}, $\mathrm{Eq}(2)$ for x_{2}, Eq (3) for x_{3}
2. Start iterative procedure by guessing: $x^{0}{ }_{1}, x^{o}{ }_{2}, x^{0}{ }_{3}$
3. Calculate $x^{1}{ }_{1}$ from $x^{o}{ }_{2}, x^{o}{ }_{3}$
4. Calculate $x^{1}{ }_{2}$ from $x^{1}{ }_{1}, x^{0}{ }_{3}$
5. Calculate $x^{1}{ }_{3}$ from $x^{1}{ }_{1}, x^{1}{ }_{2}$
6. Repeat for new x 's

Convergence Check:

$$
\left|\varepsilon_{a, i}\right|=\left|\frac{x_{i}^{k}-x_{i}^{k-1}}{x_{i}^{k}}\right| \bullet 100 \%<\varepsilon_{s}
$$

GS Convergence Criteria:

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|
$$

Sufficient but not necessary
Diagonal Dominance!

CH. 17 Least Squares Regression

Derive expressions (approximating function) that fits
the shape of the data (or general trend of the data)
(A) Straight Line Least-Squares fit

$$
y=a_{0}+a_{1} x+\underset{\uparrow}{e}
$$

- Find a fit that minimizes the error

Define: "Sum of the Squares" of the Residual

$$
S_{r}=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-a_{o}+a_{1} x_{i}\right)^{2}=\sum_{i=1}^{N}\left(y_{i, \text { meas }}-y_{i, \text { mod }}\right)^{2}
$$

Minimize S_{r} and solve for a 's \rightarrow How?
The "Linear Regression" Method produces the best fit to the data with:

$$
\begin{aligned}
& a_{o}=\bar{y}-a_{1} \bar{x} \\
& a_{1}=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
\end{aligned}
$$

CH. 17 Least Squares Regression

Goodness of fit Statistics for linear regression

1. Standard Deviation: What does it measure?

$$
S_{y}=\left(\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}\right)
$$

2. Standard Error Estimate: What does it measure?

$$
S_{y / x}=\left(\frac{\sum\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}}{n-2}\right)
$$

3. Coefficient of determination: represents error reduction due to using straight line regression rather than the average

$$
\begin{aligned}
& S_{t}=\sum\left(y_{i}-\bar{y}\right)^{2} \\
& S_{r}=\sum\left(y_{i}-a_{0}+a_{1} x_{i}\right)^{2} \\
& r^{2}=\frac{S_{t}-S_{r}}{S_{t}} \\
& r=\sqrt{\frac{S_{t}-S_{r}}{S_{t}}} \longrightarrow \begin{array}{l}
\text { Correlation } \\
\text { coefficient }
\end{array}
\end{aligned}
$$

CH. 17 Least Squares Regression

(B) Non-Linear Relationships: convert to linear

1. Exponential $y=a_{1} e^{b_{1} x}$
2. Power Model $y=a_{2} x^{b_{2}}$
3. Saturation Growth Rate $y=a_{3} \frac{x}{b_{2}+x}$
(C) Polynomial Regression

$$
y=a_{0}+a_{1} x+a_{1} x^{2}+\ldots+a_{m} x^{m}+e
$$

- Follow minimization procedure from linear regression
- Solve a system of $m+1$ equations with standard error:

$$
S_{y / x}=\left(\frac{S_{r}}{n-(m+1)}\right)
$$

(D) Multiple Linear Regression: y is a function of 2 or more independent variables

$$
y=a_{0}+a_{1} x+a_{2} x_{2}+\ldots+a_{m} x_{m}+e
$$

- Follow minimization procedure from linear regression
- Solve a system of m dimension with standard error:

$$
S_{y / x}=\left(\frac{S_{r}}{n-(m+1)}\right)
$$

CH. 21 Numerical Integration

Integrate data \& functions
(A) Newton-Cotes Integration Formula:
$I=\int_{a}^{b} f(x) d x \approx \int_{a}^{b} f_{n}(x) d x$
$f_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}$

Open \& Closed Form Methods:

1. Trapazoidal Rule \& Error \rightarrow Multiple Application
2. Simpson's Rule \& Error
3. $1 / 3$ Rule for even number of segments
4. $3 / 8$ rule for odd number of segments

CH. 22 Numerical Integration

(B) Gauss Quadrature \rightarrow Wise positioning of points for integration to reduce error

Two Point Guass Legendre formulation

$$
\begin{aligned}
& I=\int_{-1}^{1} f\left(x_{d}\right) d x_{d} \approx c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right) \\
& c_{o}, c_{1} \text { are constants (and unknown) } \\
& x_{o}, x_{1} \text { are unknown Gauss points }
\end{aligned}
$$

We need 4 Eqns. For our 4 unknowns, we choose the following polynomials: $y=1, y=x, y=x^{2}, y=x^{3}$

$$
\begin{aligned}
& \int_{-1}^{1} f\left(x_{d}\right) d x_{d}=c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)=\int_{-1}^{1} 1 d x_{d}=1 \\
& \int_{-1}^{1} f\left(x_{d}\right) d x_{d}=c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)=\int_{-1}^{1} x_{d} d x_{d}=0 \\
& \int_{-1}^{1} f\left(x_{d}\right) d x_{d}=c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)=\int_{-1}^{1} x_{d}^{2} d x_{d}=2 / 3 \\
& \int_{-1}^{1} f\left(x_{d}\right) d x_{d}=c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)=\int_{-1}^{1} x_{d}^{3} d x_{d}=0
\end{aligned}
$$

Solving we obtain:

$$
\begin{aligned}
& c_{o}=c_{1}=1 \\
& x_{o}=-x_{1} \\
& x_{o}=\frac{-1}{\sqrt{3}}
\end{aligned}
$$

$$
I \approx f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

2pt Gauss-Legendre Forumula

CH. 22 Numerical Integration

(B) Gauss Quadrature \rightarrow Apply 2pt formula to an integral of the form:

$$
I=\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}\left[c_{0} f\left(x_{o}^{\text {trans }}\right)+c_{1} f\left(x_{1}^{\text {trans }}\right)\right]
$$

To transform the x-locations we use:

$$
\begin{aligned}
x & =\frac{b+a}{2}+\frac{b-a}{2} x_{d} \\
d x & =\frac{b-a}{2} d x_{d}
\end{aligned}
$$

Substituting the Gauss points for the 2pt formula we obtain:

$$
\begin{aligned}
& x_{o}^{\text {trans }}=\frac{b+a}{2}+\frac{b-a}{2}\left(\frac{-1}{\sqrt{3}}\right) \\
& x_{1}^{\text {trans }}=\frac{b+a}{2}+\frac{b-a}{2}\left(\frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

CH. 25 Runge-Kutta Methods

- Classification of Differential Equations
- Solution of ODE's
- Initial Value Problems
- Boundary Value Problems

Solve ODE's of the form:

Note: I have
posted handout online for
classification

$$
\frac{d y}{d x}=f(x, y)
$$

Numerical Solution form:
Step size

1. Euler's Method

$$
y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h
$$

- Local truncation error - $\mathrm{O}\left(\mathrm{h}^{2}\right)$
- Global truncation error - O(h)

CH. 25 Runge-Kutta Methods

2. Huen's Method - Predictor/Corrector

- Predictor Equation

$$
y_{i+1}^{0}=y_{i}+f\left(x_{i}, y_{i}\right) h
$$

- Corrector Equation

$$
y_{i+1}=y_{i}+\underbrace{\frac{f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{0}\right)}{2}}_{\text {Average slope }} h
$$

- Can be solved iteratively
- Local truncation error - $\mathrm{O}\left(\mathrm{h}^{3}\right)$
- Global truncation error - $\mathrm{O}\left(\mathrm{h}^{2}\right)$
- $2^{\text {nd }}$ order accurate

CH. 25 Runge-Kutta Methods

3. $4^{\text {th }}$ order Runge-Kutta

- Can achieve Taylor Series accuracy without evaluating higher order derivatives.

$$
\begin{aligned}
& y_{i+1}=y_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h \\
& y_{i+1}=y_{i}+\phi h
\end{aligned}
$$

Slope Estimates:

$$
\begin{aligned}
& k_{1}=f\left(x_{i}, y_{i}\right) \\
& k_{2}=f\left(x_{i}+0.5 h, y_{i}+.5 k_{1} h\right) \\
& k_{3}=f\left(x_{i}+0.5 h, y_{i}+.5 k_{2} h\right) \\
& k_{4}=f\left(x_{i}+h, y_{i}+k_{3} h\right)
\end{aligned}
$$

- Note the recursive nature of the k's
-Recall where coefficients come from
- Global truncation error - $\mathrm{O}\left(\mathrm{h}^{4}\right)$
-4 $4^{\text {th }}$ order accurate

CH. 25 Runge-Kutta Methods

4. Systems of ODEs

- Higher order ODEs can be broken down into a system of first order ODEs that can be solved using Runge-Kutta Methods
- Example:

$$
y^{\prime \prime}+a y^{\prime}+c \sin y=0
$$

$$
y(0)=1
$$

$$
y^{\prime}(0)=-1
$$

$\frac{d y}{d x}=z$
$\frac{d z}{d x}=-a z-c \sin y$
$y(0)=1$
$z(0)=-1$

CH. 27 Boundary Value Problems

1. Shooting Method

- Convert a boundary value problem into an initial value problem.
- Solve the problem iteratively

- Linear ODE Approach
- Non-Linear ODE Approach

CH. 27 Boundary Value Problems

2. Finite Difference Equations

- Alternative to the shooting method
- Substitute finite difference equations for derivatives in the original ODE.
- This will give us a set of simultaneous algebraic equations that are solved a nodes using techniques like GaussSeidel, LU Decomposition, etc.
- Advantage over shooting method:
- Shooting method can become difficult for higher order equations where we have to assume two or more conditions

CH. 29 Partial Differential Equations: Finite Difference: Elliptical Equations

Poisson's equation:

$$
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=R(x, y)
$$

Can be written using central differencing as:

$$
\frac{T_{i+1, j}-2 T_{i, j}+T_{i-1, j}}{\Delta x^{2}}+\frac{T_{i, j+1}-2 T_{j}+T_{j-1}}{\Delta y^{2}}=R_{i, j}
$$

The resulting system of algebraic equations can be solved using standard techniques developed in Chapters 9-11

