

Lecture Objectives

- To solve various types of engineering problems using numerical integration
- To be able to determine which type of integration technique to use for specific applications - cost benefit

Numerical Integration

- Very common operation in engineering, Examples?
- Functions that are difficult or impossible to analytically integrate can often be numerically integrated
- Discrete data integration (I.e, experimental, maybe unevenly spaced data)
- We will consider two numerical integration techniques:
- Newton Cotes
- Gauss Quadrature
\qquad

Newton Cotes Integration Formula -

- Most common numerical technique
- Replace a complicated function or tabulated data with with an approximate function that we can easily integrate

$$
I=\int_{x=a}^{x=b} f(x) d x \approx \int_{x=a}^{x=b} f_{n}(x) d x
$$

Nth order polynomial
$f_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}$
$n=1 \rightarrow$ straight line $n=2 \rightarrow$ parabola

Newton Cotes Integration Formula

Apply piecewise to cover the range $a<x<b$
OPEN \& CLOSED forms of Newton-Cotes

- Open form - integration limits extend beyond the
range of data (like extrapolation); not usually used for definite integration
-Closed form - data points are located at the beginning and end of integration limits are known \rightarrow Focus

Newton Cotes Integration Formula - Trapezoidal Rule

- Use a first order polynomial ($n=1$, a straight line)
to approximate our function $f(x)$

Newton Cotes Integration Formula - Trapezoidal Rule

- This is in the form width x average height

$$
I=\underbrace{(b-a)}_{\text {width }} \underbrace{\frac{f(a)+f(b)}{2}}_{\text {Average height }}
$$

\qquad
\qquad

- Error for a single application (Truncation Error)

$E_{t}=-\frac{1}{12} f^{\prime \prime}(\xi)(b-a)^{3}$
- Exact for a linear function
- functions with $2^{\text {nd }}$ and higher order derivatives will have some error

Trapezoidal Rule - Multiple Applications

- Divide the interval a \rightarrow b into n segments with $\mathrm{n}+1$
\qquad equally spaced base points

$$
\begin{aligned}
& f(x) \text { a segment width } \\
& h=\frac{b-a}{n} \\
& \begin{array}{lllllll}
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\mathrm{a} & & & & & & \\
b
\end{array} \\
& I=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x \\
& I=h \frac{f\left(x_{o}\right)+f\left(x_{1}\right)}{2}+h \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}+\cdots+h \frac{f\left(x_{n-1}\right)+f\left(x_{n}\right)}{2} \\
& I=\frac{h}{2}\left[f\left(x_{o}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Trapezoidal Rule - Multiple Applications

- Put in the form width x average height

\qquad
\qquad
- Total Trapezoidal error - sum of individual errors \qquad

$$
E_{t}=-\frac{(b-a)^{3}}{12 n^{3}} \sum_{i=1}^{n} f^{\prime \prime}(\xi)
$$

- Approximate E_{t} by estimating mean $2^{\text {nd }}$ derivative over the entire interval

$$
\overline{f^{\prime \prime}} \approx \frac{1}{n}\left(\sum_{i=1}^{n} f^{\prime \prime}(\xi)\right) \quad E_{a}=-\frac{(b-a)^{3}}{12 n^{2}} \overline{f^{\prime \prime}}
$$

Trapezoidal Rule - Notes

1. For nicely behaved functions a single application of the trapezoid rule will give sufficient accuracy for many engineering purpose
2. For high accuracy (large n), computational effort is higher
3. Round Off Error with large n will limit the accuracy of the trapezoid rule
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simpson's $1 / 3$ Rule -

- Use a higher order polynomial to approximate our
\qquad function $f(x)-2^{\text {nd }}$ order Lagrange polynomial - a unique polynomial that passes through a data points

Simpson's $1 / 3$ Rule -

- After integrating \& simplifying:

$$
I=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]
$$

\qquad
\qquad
\qquad

Simpson's 1/3 Rule -

- Error

$$
E_{t}=-\frac{(b-a)^{5}}{2880} f^{(4)}(\xi)
$$

\qquad

- Exact for 3rd order polynomials
- Error goes like (b-a) ${ }^{5}$ compared to $3^{\text {rd }}$ power of \qquad trapezoidal rule

Simpson's 1/3 Rule - Multiple Applications

- Requires an Even number of segments
\qquad

- Error, third order accurate even though we only use 3 points

$$
E_{a}=-\frac{(b-a)^{5}}{180 n^{4}} \frac{f^{(4)}}{}
$$

Simpson's 3/8 Rule -

- An odd number of segments with an even number of points formula (use a $3^{\text {rd }}$ order polynomial to approximate $f(x)$)
- Can be used with Simpson's $1 / 3$ rule to evaluate even or odd number of segment problems.

$$
\begin{aligned}
& I=\int_{x=a}^{x=b} f(x) d x \approx \int_{x=a}^{x=b} f_{3}(x) d x \\
& I=\frac{3}{8} h\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right] \quad h=\frac{b-a}{3} \\
& I=(b-a) \\
& \underbrace{[\underbrace{f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{1}\right)}_{\text {Average height }}}_{\text {width }} 8
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simpson's 3/8 Rule -

- Error

$$
E_{t}=-\frac{(b-a)^{5}}{6480} f^{(4)}(\xi)
$$

- Exact for $3^{\text {rd }}$ order polynomials, slightly more accurate than $1 / 3$ rule
- Simpson's $1 / 3$ rule is preferred since the same accuracy is achieved with few points.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gauss Quadrature

Newton-Cotes - (ie., trapezoidal rule \& Simpson's) the integral
\qquad was determined by calculating the area under the curve connecting points a and b (where we evaluate the function at the end points).

Gauss Quadrature - Consider 2 points along a straight line in between a and b where positive and negative errors balance to reduce total error and give a an improved estimate of the integral. Uses unequal non-uniform spacing - best for functions not tabular data.

Gauss Quadrature - Method of Undetermined Coefficients

Trapezoidal Rule:

$$
\begin{gathered}
I=(b-a) \frac{f(a)+f(b)}{2} \\
I \approx c_{0} f(a)+c_{1} f(b)
\end{gathered}
$$

Should give exact results if $f(x)=$ constant or straight line
(a) $y=1$

(b) $\mathrm{y}=\mathrm{x}$
$f(x))_{(b-a) / 2}$
x

Gauss Quadrature - Method of Undetermined Coefficients

$$
\text { (a) } \mathrm{y}=1
$$

$\begin{aligned} & \text { Evaluate Exact } \longrightarrow I=\int_{-\frac{b-a}{2}}^{\frac{b-a}{2}} f(x) d x=\int_{-\frac{b-a}{2}}^{\frac{b-a}{2}} 1 d x=\left.x\right|_{-\frac{b-a}{2}} ^{\frac{b-a}{2}}=b-a \\ & \text { integral } \\ & \left.\begin{array}{l}\text { Evaluate } \\ \text { approximation } \longrightarrow I=c_{0}\end{array}\right](a)+c_{1} f(b)=c_{0}+c_{1}\end{aligned}$.
approximation $\longrightarrow I=c_{0} f(a)+c_{1} f(b)=c_{0}+c_{1}$

Set equal to each other:

$$
b-a=c_{0}+c_{1}
$$

Gauss Quadrature - Method of Undetermined Coefficients \qquad

$$
\begin{aligned}
& \text { (b) } \mathrm{y}=\mathrm{x} \\
& I=\int_{-\frac{b-a}{2}}^{\frac{b-a}{2}} f(x) d x=\int_{-\frac{b-a}{2}}^{\frac{b-a}{2}} x d x=\left.\frac{x^{2}}{2}\right|_{-\frac{b-a}{2}} ^{\frac{b-a}{2}}=0 \\
& I \approx c_{0} f(a)+c_{1} f(b) \\
& I \approx c_{0}(-(b-a) / 2)+c_{1}((b-a) / 2) \\
& f(x) \times-c_{0} \frac{b-a}{2}+c_{1} \frac{b-a}{2}=0
\end{aligned}
$$

Gauss Quadrature - Method of Undetermined Coefficients

\qquad
2 Equations \& 2 unknowns solve for c_{o} and c_{1} :

$$
\begin{aligned}
-c_{0} \frac{b-a}{2}+c_{1} \frac{b-a}{2}=0 & \longrightarrow c_{0}=c_{1} \\
b-a=c_{0}+c_{1} & \longrightarrow c_{0}=c_{1}=\frac{b-a}{2}
\end{aligned}
$$

Substitute c_{o} and c_{1} back into the original equation:
\qquad
\qquad
\qquad

$$
\begin{aligned}
& I \approx c_{0} f(a)+c_{1} f(b) \\
& I \approx \frac{b-a}{2} f(a)+\frac{b-a}{2} f(b) \\
& I=(b-a) \frac{f(a)+f(b)}{2} \quad \begin{array}{l}
\text { Equivalent to the } \\
\text { Trapezoidal Rule! }
\end{array}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

Two Point Gauss Legendre Formula

Extend the method of undetermined coefficients:

$$
I \approx c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)
$$

\qquad

$$
c_{o} \& c_{1} \text { - unknown constants }
$$

$$
f\left(x_{o}\right) \& f\left(x_{1}\right) \text { - unknown locations between } a \& b
$$

We now have 4 unknowns \rightarrow need 4 equations!

Two Point Gauss Legendre Formula
Need to assume functions again:

$$
I \approx c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)
$$

(a) $f(x)=1$
(b) $f(x)=x$
(c) $f(x)=x^{2} \quad$ Parabolic \& cubic functions will give (d) $\left.f(x)=x^{3}\right\} \quad$ us a total of 4 equations

We will get a 2pt linear integration formula formula that will be exact for cubics!

To simplify the math \& provide a general formula \rightarrow select limits of integration to be $-1 \& 1$

Normalized coordinates

Two Point Gauss Legendre Formula

Evaluate the integrals for our 4 equations:
(a) $f(x)=1$
$c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)=\int_{-1}^{1} 1 d x=2$
(b) $f(x)=x$
$c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)=\int_{-1}^{1} x d x=0$
(c) $f(x)=x^{2} \quad c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)=\int_{-1}^{1} x^{2} d x=\frac{2}{3}$
(d) $f(x)=x^{3} \quad c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)=\int_{-1}^{1} x^{3} d x=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two Point Gauss Legendre Formula

Rewrite the equations:

$$
\begin{aligned}
& c_{0}+c_{1}=2 \\
& c_{0} x_{0}+c_{1} x_{1}=0 \\
& c_{0} x_{0}^{2}+c_{1} x_{1}^{2}=\frac{2}{3} \\
& c_{0} x_{0}^{3}+c_{1} x_{0}^{3}=0
\end{aligned}
$$

Solve for co, c1, xo and x 1 :

$$
\begin{aligned}
& c_{0}=c_{1}=1 \\
& x_{0}=-1 / \sqrt{3} \\
& x_{1}=1 / \sqrt{3}
\end{aligned}
$$

Two Point Gauss Legendre Formula
2 Point Gauss Legendre Formula (for integration limits -1 to 1:
Need to change variables to translate to other integration limits
3rd order accurate

Two Point Gauss Legendre Formula
Changing the limits of integration:
• Introduce a new variable x_{d} that represents x in our
generalized formula (where we use -1 to 1)

- Assume x_{d} is linearly related to x
$x=a_{0}+a_{1} x_{d}$
$x=a \rightarrow x_{d}=-1$

$x=b \rightarrow x_{d}=+1$$\quad$| $a=a_{0}+a_{1}(-1)$ |
| :---: |
| $b=a_{0}+a_{1}(1)$ |

Two Point Gauss Legendre Formula

Substitute a_{o} and a_{1} back into our original linear formula

$$
\begin{aligned}
& x=a_{0}+a_{1} x_{d} \\
& x=\left(\frac{b+a}{2}\right)+\left(\frac{b-a}{2}\right) x_{d}
\end{aligned}
$$

\qquad
\qquad

Differentiate with respect to x_{d} :

$$
d x=\left(\frac{b-a}{2}\right) d x_{d}
$$

Substitute these values of x and $d x$ in the original integral to effectively change the limits of integration without changing the value of the integral.

$$
I=\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}\left[c_{0} f\left(x_{o}^{\text {trans }}\right)+c_{1} f\left(x_{1}^{\text {trans }}\right)\right]
$$

Gauss-Legendre Quadrature - uses roots of Legendre Polynomials to locate the point at which \qquad the integrand is evaluated

$$
\int_{-1}^{1} f(x) d x=\sum_{i=0}^{n} c_{i} f\left(x_{i}\right)
$$

Gauss-Legendre Quadrature - uses roots of Legendre Polynomials to locate the point at which the integrand is evaluated
unknown weighting coefficients

Gauss-Legendre Quadrature - uses roots of Legendre Polynomials to locate the point at which the integrand is evaluated
unknown weighting coefficients

$$
\int_{-1}^{1} f(x) d x=\sum_{i=0}^{n} c_{i} f\left(x_{j}\right)
$$

The values of w_{i} and x_{i} are chosen so that the formula will be exact up to \& including a polynomial of degree $(2 m-1)$, where m is the number of points.

Ex: 2 Point \rightarrow Exact 3 $3^{\text {rd }}$ order polynomial

Gauss-Legendre Quadrature - General form 2 Point Application - from our derivation, we found x_{o} and x_{1} for the integration limits 1 to -1
$I=\int_{-1}^{1} f\left(x_{d}\right) d x_{d} \approx c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)$

$$
I \approx f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{-1}{\sqrt{3}}\right)
$$

Gauss-Legendre Quadrature - 2 Pt Application Transformation procedure

$$
\begin{aligned}
& x=\frac{b+a}{2}+\frac{b-a}{2} x_{d} \\
& x_{o}^{\text {tans }}=\frac{b+a}{2}+\frac{b-a}{2}\left(\frac{-1}{\sqrt{3}}\right) \\
& x_{1}^{\text {trans }}=\frac{b+a}{2}+\frac{b-a}{2}\left(\frac{1}{\sqrt{3}}\right) \\
& d x=\frac{b-a}{2} d x_{d} \\
& I=\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}\left[c_{0} f\left(x_{o}^{\text {trans }}\right)+c_{1} f\left(x_{1}^{\text {trans }}\right)\right]
\end{aligned}
$$

```
            Gauss-Legendre Quadrature - Simple 2 point Example
    Integrate the following function from \(x=0.2\) to 0.8 :
    \(f(x)=4 x^{4}+2 x^{2}-1\)
    \(I=\int_{2}^{8} f(x) d x=\int_{2}^{8} 4 x^{4}+2 x^{2}-1 d x\)
    \(I=\int_{-1}^{1} f\left(x_{d}\right) d x_{d} \approx f(-1 / \sqrt{3})+f(1 / \sqrt{3})\)
Step 1: Transform limits and Gauss points ( \(\mathrm{x}_{0} \& \mathrm{x}_{1}\) ) from general form
    \(x_{o}^{\text {rans }}=\frac{b+a}{2}+\frac{b-a}{2}\left(\frac{-1}{\sqrt{3}}\right)=0.5+0.3\left(\frac{-1}{\sqrt{3}}\right)=0.3267949\)
    \(x_{1}^{\text {rons }}=\frac{b+a}{2}+\frac{b-a}{2}\left(\frac{1}{\sqrt{3}}\right)=0.5+0.3\left(\frac{1}{\sqrt{3}}\right)=0.6732050\)
Step 2: perform summation
\(I=\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}\left[c_{0} f\left(x_{o}^{\text {rrans }}\right)+c_{1} f\left(x_{1}^{\text {rans }}\right)\right]\)
\(I \approx 0.3[(1) f(0.3267949)+(1) f(0.6732050)]\)
\(I \approx 0.3\left[4(0.3267949)^{4}+2(0.3267949)^{2}-1+4(0.673205)^{4}+20.673205^{2}-1\right]\)
```


Error Estimate n-point Gauss-Legendre

\qquad Formula

$$
E_{t}=\frac{2^{2 n+1}[n!]^{4}}{(2 n+1)[(2 n) \cdot]^{3}} f^{(2 n)}(\xi) \quad-1<\xi<1
$$

\qquad

Where n is the number of points in the formula (remember, a n-point formula integrates a polynomial of $2 \mathrm{n}-1$ exactly!) \qquad $f^{(2 n)}(\xi)$ is the (2n)th derivative after the change of variable

If the magnitude of the higher order derivatives decrease or only increase slowly with increasing n, Gauss formulas are Significantly more accurate than Newton-Cotes formulas.
\qquad

