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Numerical Integration

Ch. 21

Lecture Objectives

• To solve various types of engineering 
problems using numerical integration

• To be able to determine which type of 
integration technique to use for specific 
applications – cost benefit

• Very common operation in engineering, Examples?

• Functions that are difficult or impossible to analytically 
integrate can often be numerically integrated

• Discrete data integration (I.e, experimental, maybe unevenly 
spaced data)

• We will consider two numerical integration techniques:
– Newton Cotes
– Gauss Quadrature

Numerical Integration
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Newton Cotes Integration Formula –
• Most common numerical technique
• Replace a complicated function or tabulated data 

with with an approximate function that we can 
easily integrate
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Nth order polynomial

n = 1 straight line
n = 2 parabola

Newton Cotes Integration Formula

a b x

f(x)

n = 1

a b x

f(x)

n = 2

Apply piecewise to cover the range a < x < b

OPEN & CLOSED forms of Newton-Cotes
•Open form – integration limits extend beyond the 
range of data (like extrapolation); not usually used for 
definite integration
•Closed form – data points are located at the beginning 
and end of integration limits are known Focus

Newton Cotes Integration Formula – Trapezoidal Rule
• Use a first order polynomial (n = 1, a straight line) 

to approximate our function f(x)

∫∫
=

=

=

=

≈=
bx

ax

bx

ax

dxxfdxxfI )()( 1

( ) ( ) ( ) ( )ax
ab

afbfafxf −
−
−

+=)(1

a b x

f(x)

n = 1

f(a)
f(b)

( ) ( ) ( ) ( ) b

a

x
ab

bafabfx
ab

afbfI ⎥
⎦

⎤
⎢
⎣

⎡
−
−

+
−
−

=
2

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
2

2

22

bfafabI

ab
ab

bafabfab
ab

afbfI
b

a

+
−=

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

+
−

−
−

=



3

Newton Cotes Integration Formula – Trapezoidal Rule
• This is in the form width x average height

• Error for a single application (Truncation Error)

a b x

f(x)

n = 1

f(a)
f(b)
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- Exact for a linear function
- functions with 2nd and higher 
order derivatives will have some 
error

Trapezoidal Rule – Multiple Applications
• Divide the interval a b into n segments with n+1 

equally spaced base points

a b
x0

f(x)

x1 x3 x4 x5 x6x2

h = segment width
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Trapezoidal Rule – Multiple Applications
• Put in the form width x average height

• Total Trapezoidal error – sum of individual errors

• Approximate Et by estimating mean 2nd derivative 
over the entire interval

width Average height
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Trapezoidal Rule – Notes
1. For nicely behaved functions a single application of 

the trapezoid rule will give sufficient accuracy for 
many engineering purpose

2. For high accuracy (large n), computational effort is 
higher

3. Round Off Error with large n will limit the accuracy  
of the trapezoid rule

Simpson’s 1/3 Rule -
• Use a higher order polynomial to approximate our 

function f(x) – 2nd order Lagrange polynomial – a 
unique polynomial that passes through a data points
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Simpson’s 1/3 Rule -
• After integrating & simplifying:
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x

f(x)
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Simpson’s 1/3 Rule –
• Error

• Exact for 3rd order polynomials
• Error goes like (b-a)5 compared to 3rd power of 

trapezoidal rule
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Simpson’s 1/3 Rule – Multiple Applications
• Requires an Even number of segments

• Error, third order accurate even though we only use 
3 points
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Simpson’s 3/8 Rule -
• An odd number of segments with an even number of 

points formula (use a 3rd order polynomial to 
approximate f(x))

• Can be used with Simpson’s 1/3 rule to evaluate 
even or odd number of segment problems.
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Simpson’s 3/8 Rule –
• Error

• Exact for 3rd order polynomials, slightly more 
accurate than 1/3 rule

• Simpson’s 1/3 rule is preferred since the same 
accuracy is achieved with few points.
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Gauss Quadrature

x

f(x)

ba x1x0

Newton-Cotes – (ie., trapezoidal rule & Simpson’s) the integral 
was determined by calculating the area under the curve 
connecting points a and b (where we evaluate the function at the 
end points).

Gauss Quadrature – Consider 2 points along a straight line in 
between a and b where positive and negative errors balance to 
reduce total error and give a an improved estimate of the integral.
Uses unequal non-uniform spacing – best for functions not 
tabular data.

Gauss Quadrature – Method of Undetermined 
Coefficients

x

f(x)

-(b-a)/2

Trapezoidal Rule:
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Should give exact results if f(x) = constant or straight line

(b-a)/2 x

f(x)

-(b-a)/2

(b-a)/2

(a) y = 1 (b) y = x
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Gauss Quadrature – Method of Undetermined 
Coefficients
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Evaluate Exact
integral

Evaluate 
approximation

Set equal to each other:

Gauss Quadrature – Method of Undetermined 
Coefficients

(b) y = x
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Gauss Quadrature – Method of Undetermined 
Coefficients

2 Equations & 2 unknowns solve for co and c1:
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Two Point Gauss Legendre Formula

Extend the method of undetermined coefficients:

)()( 1100 xfcxfcI +≈

co & c1 – unknown constants
f(xo) & f(x1) – unknown locations between a & b

x

f(x)

ba x1x0

We now have 4 unknowns need 4 equations!

Two Point Gauss Legendre Formula

Need to assume functions again:

)()( 1100 xfcxfcI +≈
(a) f(x) = 1
(b) f(x) = x
(c) f(x) = x2

(d) f(x) = x3
Parabolic & cubic functions will give 
us a total of 4 equations

We will get a 2pt linear integration formula formula that will be 
exact for cubics!

To simplify the math & provide a general formula select 
limits of integration to be –1 & 1

Normalized coordinates

Two Point Gauss Legendre Formula

Evaluate the integrals for our 4 equations:
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Two Point Gauss Legendre Formula

Rewrite the equations:
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Two Point Gauss Legendre Formula

2 Point Gauss Legendre Formula (for integration limits –1 to 1:
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Need to change variables to translate to other integration limits

Two Point Gauss Legendre Formula

Changing the limits of integration:
• Introduce a new variable xd that represents x in our 
generalized formula (where we use –1 to 1)
• Assume xd is linearly related to x
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Two Point Gauss Legendre Formula

Substitute ao and a1 back into our original linear formula
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the value of the integral.
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Gauss-Legendre Quadrature – uses roots of 
Legendre Polynomials to locate the point at which 
the integrand is evaluated
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Gauss-Legendre Quadrature – uses roots of 
Legendre Polynomials to locate the point at which 
the integrand is evaluated
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Gauss-Legendre Quadrature – uses roots of 
Legendre Polynomials to locate the point at which 
the integrand is evaluated
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The values of wi and xi are chosen so that 
the formula will be exact up to & including 
a polynomial of degree (2m-1), where m is 
the number of points.

Ex: 2 Point Exact 3rd order polynomial

Gauss-Legendre Quadrature – General form 2 Point 
Application – from our derivation, we found xo and x1for 

the integration limits 1 to -1
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Gauss-Legendre Quadrature – Simple 2 point Example
Integrate the following function from x=0.2 to 0.8:
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Step 1: Transform limits and Gauss points (xo & x1) from general form
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Step 2: perform summation

Error Estimate n-point Gauss-Legendre
Formula
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Where n is the number of points in the formula (remember, 
a n-point formula integrates a polynomial of 2n-1 exactly!)

is the (2n)th derivative after the change of variable

11 <<− ξ

If the magnitude of the higher order derivatives decrease or
only increase slowly with increasing n, Gauss formulas are
Significantly more accurate than Newton-Cotes formulas.

Matlab Multipoint Example

Built in Matlab integration methods

I=trapz(y)*dx

f=inline(‘x^2+1’)

I=quad(f,0,2)

Integration limits


