# **Ordinary Differential Equations** Ch. 25 Orientation • ODE's - Motivation - Mathematical Background • Runge-Kutta Methods - Euler's Method - Huen and Midpoint methods Lesson Objectives Be able to classify ODE's and distinguish ODE's from PDE's. • Be able to reduce nth order ODE's to a system of first order ODE's. • Understand the visual representations of Euler's method. • Know the relationship of Euler's Method to the Taylor series expansion and the insight it provides regarding the error of the method • Understand the difference between local and global truncation errors for Euler's method.

### Ordinary Differential Equations: Motivation

- Very Common in Engineering
- Fundamental laws are based on changes in physical properties
  - Q =-k dT/dx Fourier's Law
  - F= d/dt (mv) Newton's 2<sup>nd</sup> law
- Many ODEs can be solved analytically, however more complex ones must be attacked numerically

Differential Equations: Classification

- Order of a differential Equation.
- Ordinary vs. Partial differential equations.
- Linear/Non-linear

$$y'-y=0$$

$$mx'' + cx' + kx = F(t)$$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = F(t)$$

### ODEs – Numerical Solutions

- Concentrate on 1<sup>st</sup> order ODE's because higher order ODE's can be reduced to a set of 1<sup>st</sup> order ODEs
- 1<sup>st</sup> Order ODE  $\rightarrow$ F(x,y,y')=0

$$y' - y + x = 0$$

• 2<sup>nd</sup> Order ODE  $\rightarrow$ F(x,y,y',y'')=0

$$y''+2xy'=e^x\cos(y)$$

### **Ordinary Differential Equations**

• Reducing higher order differential equations to a system of first order equations:

$$mx'' + cx' + kx = 0$$

Define a new variable

$$y = \frac{dx}{dt}$$

Substitute into the original DE

$$my' + cy + kx = 0$$

### **Ordinary Differential Equations**

• Reducing higher order differential equations to a system of first order equations:

$$my' + cy + kx = 0$$

$$y = \frac{dy}{dt}$$

$$\frac{dy}{dt} = -\left(\frac{cy + kx}{2}\right) = 0$$

In general, an  $n^{th}$  order ODE can be reduced to n 1st order ODEs (with appropriate boundary or initial conditions)

### ODEs - Numerical Solutions

- <u>Initial Value Problems</u>: all conditions are specified at the same value of the independent variable (t=0 or x=0). Provide a unique solution (for an *nth* order differential equation, n conditions are required).
- <u>Boundary Value Problems</u>: conditions are specified at different values of the independent variable, I.e.,

$$y(x=0)=0 & y(x=4)=3$$

# Answer the following

- What is (are) the dependent variable(s)?
- What is (are) the independent variable (s)?
- Is this a ODE or PDE?
- What order is this differential equation?
- Is this linear or nonlinear?

$$\frac{dC}{dt} = \frac{d^2C}{dx^2}$$

### Leonhard Euler



### y = f(x)

### Runge-Kutta Methods - CH 25

Solve ODEs of the form:

$$\frac{dy}{dx} = f(x, y)$$

Can be solved Numerically using:

$$y_{i+1} = y_i + \phi h$$

 $\phi$  = slope estimate

h = step size

 $y_i$  = current value of the dependant variable

 $y_{i+1}$  estimate of dependant variable over dist. H

Formula can be applied step by step to trace out the solution trajectory.

### Euler's Method

The first derivative provides the slope at  $x_i$ 

$$\frac{dy}{dx} = y' = \phi = f(x, y)$$

Hence 
$$y_{i+1} = y_i + f(x_i, y_i)h$$
 Euler's Method

Note: the slope at the beginning of the interval is taken as the average slope over the entire interval

# Euler's Method example

Use Euler's method to numerically integrate  $y' = -2x^3 + 12x^2 - 20x + 8.5$ 

from x=0 to x=4 with a step size of 0.5. The initial condition at x=0 is y=1.

### Euler's Method – Error Assessment

### 2 Sources of Error:

- Truncation Taylor Series
   Round-Off significant Digits

Truncation Error: 2 parts

- 1. Local method application over 1 step
- 2. Global accumulated additive error over multiple applications



### Euler's Method – Error Assessment

Local Truncation Error:

• First, derive Euler's method from T-S Expansion to represent: y' = f(x, y) with  $h = (x_{i+1} - x_i)$ 

represent: 
$$y = f(x, y)$$
 with  $h = (x_{i+1} - x_i)$   

$$y_{i+1} = y_i + y'_i h + \frac{y''_i h^2}{2!} + ... + \frac{y''_i h^n}{n!} + R_n$$
Now let  $y' = f(x, y)$ 

$$\underbrace{y_{i+1} = y_i + f(x_i, y_i)h}_{\text{Euler's Method}} + \underbrace{\frac{f'(x_i, y_i)h^2}{2!}}_{\text{Next term}} + \dots + \underbrace{\frac{f^{n-1}(x_i, y_i)h^n}{n!}}_{\text{n!}} + O(h^{n+1})$$

$$\therefore E_a = O(h^2) \Rightarrow \frac{\text{Local truncation}}{\text{Error}}$$

### Euler's Method - Error Assesment

### Notes:

- This is only the *local truncation* error
- The *global truncation* error is O(h)
- If the function is a first order polynomial the method is exact → "1st Order Method"
- The error pattern holds for higher order methods ( $n^{\text{th}}$ order method), That is:
  - They yield exact results for  $n^{th}$  order polynomial
  - Local truncation error is  $O(h^{n+1})$
  - Global truncation error is  $O(h^n)$

### Matlab Pseudocode for Euler's Method

- 'set integration range
- 'initialize variables
- 'set step size
- 'loop to generate x array
- 'loop to implement Euler's Method
- 'display results

## We have learned

- How to classify differential equations
- How to reduce nth order ODE's to a system of 1st order ODE's.
- The visual representation of Euler's method.
- The relationship between the Taylor series expansion and Euler's Method
- The difference between global and local truncation error in Euler's Method.

### Euler's Method – Beyond Error

- *Convergence:* In the absence of Round-off Errors if our numerical solution approaches the exact solution as the step size *h* is reduced, it is said to be convergent
- Stability: Depends on the method and the differential equation





### Euler's Method - Stability

- A numerical method is <u>unstable</u> if the error grows without bound (e.g. exponential growth) for a problem in which the exact solution
- Can depend on the method as well as the differential equation.
- Example:

$$\frac{dy}{dx} = \lambda y$$

$$y = y_0 e^{\lambda x}$$

$$\int y_{i+1} = y_i + \lambda y_i h = y_i (1 + \lambda h)$$

Euler

Euler Method 
$$\begin{cases} y_{i+1} = y_i + \lambda y_i h = y_i (1 + \lambda h) \\ y_1 = y_0 (1 + \lambda h) \end{cases}$$

$$y_2 = y_1 (1 + \lambda h) = y_0 (1 + \lambda h) (1 + \lambda h) = y_0 (1 + \lambda h)^2$$

$$y_n = y_0 (1 + \lambda h)^n$$

Euler's method is conditionally stable for:

$$|1 + \lambda h| \le 1$$

### Euler's Method - Stability

$$|1 + \lambda h| \le 1$$

This Implies

$$\lambda < 0$$

$$h \leq \frac{2}{|\lambda|}$$

A numerical Method is *unconditionally stable* if it is stable for any values of h and other parameter is the differential equation

### Huen's Method - "Predictor - Corrector" Approach

1. Begin as with Euler:

$$y_{i+1}^o = y_i + f(x_i, y_i)h$$
 Predictor Equation

2. Use to estimate slope at the end of the interval, h

$$y'_{i+1} = f(x_{i+1}, y_{i+1}^{o})$$

3. Calculate an average slope 
$$\overline{y'} = \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^o)}{2}$$
4. Extrapolate linearly from  $y_i$  to  $y_{i+1}$ 

$$y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^o)}{2} h \longrightarrow \text{Corrector Equation}$$





Predictor Step

Corrector Step Use average slope to Obtain new estimate

### Huen's Method - Iteration step

 $\chi_{i+1}$   $\chi$ 

Since  $y_{i+1}$  is on both sides of the corrector equation it can be applied iteratively as:

$$\overline{y'} = \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^o)}{2}$$

$$\downarrow$$

$$y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^o)}{2}h$$

- •This iterative procedure does not converge on the true answer
- •Converges to a finite truncation error

Huen's Method – Example Solve: y' = x - y Subject to the I.C. y(x = 0) = 0

at x=0.4 with h=0.4 using Heun's method 1. Begin with Predictor Equation (i=0, for initial conditions):

$$y_{i+1}^o = y_i + f(x_i, y_i)h$$

$$y_{i+1}^{o} = y_i + f(x_i, y_i)h$$
  

$$y_1^{o} = y_0 + f(x_0, y_0)h$$

$$y_1^o = y_0 + (x_0 - y_0)h = 0$$

2. Calculate an average slope 
$$\frac{\overline{y'} = 0.5 (f(x_i, y_i) + f(x_{i+1}, y_{i+1}^o))}{\overline{y'} = 0.5 ((x_0 - y_0) + (x_1, y_i^o))}$$

$$y' = 0.5((x_0 - y_0) + (x_1, y_1^o))$$

$$\overline{y'} = 0.5((0-0) + (0.4-0)) = 0.2$$

4. Use corrector equation

$$y_{i+1} = y_i + 0.5(f(x_i, y_i) + f(x_{i+1}, y_{i+1}^o))h$$

$$y_1 = 0 + (0.2)0.4 = 0.08$$

### Huen's Method - Example

Solve: y' = x - y Subject to the I.C. y(x = 0) = 0 at x = 0.4 with h = 0.4 using Heun's method

Exact Solution:  $y_e = x + e^{-x} - 1$ 

At 
$$x = 0.4$$
  $y_e = 0.4 + e^{-0.4} - 1 = 0.07032$ 

True Error 
$$\longrightarrow E_t = \left| \frac{.07032 - .08}{.07032} \right| \bullet 100\% = 13\%$$

- $\bullet$  Method is exact for  $2^{nd}$  order polynomials
- 2nd order accurate
- Local truncation error is  $O(h^3)$
- •Global truncation error is  $O(h^2)$

### Huen's Method - Example

Solve: y' = x - y Subject to the I.C. y(x = 0) = 0 at x = 0.4 with x = 0.4 using Heun's method

Exact Solution:  $y_e = x + e^{-x} - 1$ 

At x = 0.4 
$$y_e = 0.4 + e^{-0.4} - 1 = 0.07032$$

True Error 
$$\longrightarrow E_t = \frac{|.07032 - .08|}{.07032} \bullet 100\% = 13\%$$

- Method is exact for 2<sup>nd</sup> order polynomials
- 2<sup>nd</sup> order accurate
- Local truncation error is  $O(h^3)$
- •Global truncation error is  $O(h^2)$

Compare to Euler?

### Huen's Method - Matlab Code Example

See matlab code

Note that if y' is only a function of the independent variable x, there is no need to iterate and the following equation holds for Huen's method:

$$y_{i+1} = y_i + \frac{f(x_i) + f(x_{i+1})}{2}h$$
 Directly related to the trapezoidal rule

### Runge-Kutta Methods – CH 25

Can achieve Taylor Series accuracy without evaluating higher order derivatives.

General form: 
$$y_{i+1} = y_i + \phi(x_i, y_i, h)h$$
 (1)

 $\phi(x_i,y_i,h)$  - Increment function & is like a slope over the interval

$$\phi = a_1k_1 + a_2k_2 + ... + a_nk_n$$
• a's are constants & k's are recurrence relationships
•n=1  $\Rightarrow$  Euler's method

### Runge-Kutta Methods - CH 25

Can achieve Taylor Series accuracy without evaluating higher order derivatives

General form: 
$$y_{i+1} = y_i + \phi(x_i, y_i, h)h$$
 (1)

 $\phi(x_i,y_i,h)$  - Increment function & is like a slope over the interval

$$\phi = a_1k_1 + a_2k_2 + \dots + a_nk_n$$

$$k_1 = f(x_i, y_i)$$
• a's are constants & k's are recurrence relationships
• n=1 \(\neq \text{Euler's method}\)
$$k_2 = f(x_i + p_1h, y_i + q_{11}k_1h)$$

$$k_3 = f(x_i + p_2h, y_i + q_{21}k_1h + q_{22}k_2h)$$

$$k_n = f(x_i + p_{n-1}h, y_i + q_{n-1,1}k_1h + q_{n-1,2}k_2h + \dots + q_{n-1,n-1}k_{n-1}h)$$

### Runge-Kutta Methods

To Determine the final form of (1)

- 1. Select n
- 2. Evaluate *a's,p's,q's* by setting the general form equal to terms in the T-S expansion.
- 3. For low-order forms
  - Number of terms *n*=order of the method
  - Local truncation error is  $O(h^{n+1})$
  - Global truncation error is  $O(h^n)$

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| - |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

See Box 25.1 in

### 2<sup>nd</sup>- Order Runge-Kutta Methods

General Form: 
$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$
 (2) 
$$k_1 = f(x_i, y_i)$$
 
$$k_2 = f(x_i + p_1h, y_i + q_{11}k_1h)$$

By setting (2) equal to a T-S expansion through the  $2^{\rm nd}$  order term, we can solve for  $a_pa_pp_pq_{II}$ 

$$\begin{vmatrix} a_1 + a_2 = 1 \\ a_2 p_1 = 1/2 \\ a_2 q_{11} = 1/2 \end{vmatrix} \xrightarrow{\text{3 Eqns & 4 unknows} \\ \text{Specify } a_2 \text{ value}} \begin{cases} a_1 = 1 - a_2 \\ p_1 = 1/(2a_2) \\ q_{11} = 1/(2a_2) \end{cases}$$

\*Since there are an infinite number of choices for  $a_2$  there will be an infinite number of  $2^{nd}$  order R-K Methods

### 2<sup>nd</sup>- Order Runge-Kutta Methods

A) Huen Method without iteration

$$(a_2 = \frac{1}{2}): a_1 = \frac{1}{2}, p_1 = 1, q_{11} = 1$$

$$y_{i+1} = y_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + h, y_i + k_1h)$$

 $k_1$  slope at start of interval  $k_2$  slope at end of interval

$$a_1 = 1 - a_2$$

 $p_1 = 1/(2a_2)$ 

Global Truncation Error  $\sim O(h^2)$ 

 $q_{11} = 1/(2a_2)$ 

### 2<sup>nd</sup>- Order Runge-Kutta Methods

**B**) Midpoint Method ( $a_2 = 1$ ):  $a_1 = 0$ ,  $p_1 = 1/2$ ,  $q_{11} = 1/2$ 

$$y_{i+1} = y_i + k_2 h$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + 0.5h, y_i + 0.5k_1 h)$$

$$a_1 = 1 - a_2$$
  
 $p_1 = 1/(2a_2)$   
 $q_{11} = 1/(2a_2)$ 

Global Truncation Error  $\sim O(h^2)$ 

### 2<sup>nd</sup>- Order Runge-Kutta Methods

C) Ralston's Method ( $a_2 = 2/3$ ):  $a_1 = 1/3$ ,  $p_1 = 3/4$ ,  $q_{11} = 3/4$ 

$$y_{i+1} = y_i + \left(\frac{1}{3}k_1 + \frac{2}{3}k_2\right)h$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + 0.75h, y_i + .75k_1h)$$

$$a_1 = 1 - a_2$$

$$p_1 = 1/(2a_2)$$

 $q_{11} = 1/(2a_2)$ 

Global Truncation Error  $\sim O(h^2)$ 

### 4th - Order Runge-Kutta Methods

# Classical 4th order RK Method - most commonly used RK Classical 4 ... method $y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$

$$y_{i+1} = y_i + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) k_1$$

$$y_{i+1} = y_i + \phi h$$

Slope Estimates:

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + 0.5h, y_i + .5k_1h)$$

$$k_3 = f(x_i + 0.5h, y_i + .5k_2h)$$

$$k_4 = f(x_i + h, y_i + k_3 h)$$

Global Truncation Error ~ O(h4)



### 4th - Order Runge-Kutta Methods -

Example: Use classical RK4 to determine y @ x=0.4 for y'=x-y and h = 0.4

Recall the exact solution is:  $y = x + e^{-x} - 1$ y(0.4) = 0.070320

RK4 Solution:

$$\begin{vmatrix}
x_0 = 0 \\
y_0 = 0
\end{vmatrix}$$
 Initial Conditions

$$y_0 = 0$$

$$k_1 = f(x_i, y_i) = x_0 - y_0 = 0$$

$$k_2 = f(x_i + 0.5h, y_i + .5k_1h) = (0 + 0.4/2) - (0+0) = 0.2$$

$$k_3 = f(x_i + 0.5h, y_i + .5k_2h) = (0 + 0.4/2) - (0 + (0.5)(0.2)(0.4)) = 0.16$$

$$k_4 = f(x_i + 0.5h, y_i + k_3h) = (0 + 0.4) - (0 + 0.16(0.4)) = 0.336$$

$$y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h = 0 + \frac{1}{6}(0 + 2(.2) + 2(.16) + .336)0.4$$

 $y_1 = 0.07040$ 

### $\underline{4^{th} - Order\ Runge-Kutta\ Methods} -$

Example: Use classical RK4 to determine y @ x=0.4 for y'=x-y and h=0.4

Error:

$$E_{t} = \left| \frac{.07032 - .07040}{.07032} \right| \bullet 100\% = .11\%$$

See Matlab Sample Matlab RK4 method

### Method Comparison

- Higher order methods produce better accuracy
- Effort for the higher order methods is similar to low-order methods (much of the effort goes into evaluating the function)
- Classical 4th order RK is most widely used as it produces accurate results with reasonable effort.

### Systems of Equations

- Recall, Any  $n^{th}$  order ODE can be represented as a system of n 1st order ODEs

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2, ..., y_n)$$

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2, ..., y_n)$$

$$\frac{dy_2}{dx} = f_2(x, y_1, y_2, ..., y_n)$$

$$\vdots$$

$$\frac{dy_n}{dx} = f_n(x, y_1, y_2, ..., y_n)$$

$$\frac{dy_n}{dx} = f_n(x, y_1, y_2, ..., y_n)$$

• To solve the system requires *n* initial conditions at  $x = x_0$ 

### Systems of Equations – RK4 Example

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2)$$
$$\frac{dy_2}{dx} = f_2(x, y_1, y_2)$$

For example:

$$\frac{dy}{dx} = f_1(x, y, z) = -y$$

$$\frac{dz}{dx} = f_2(x, y, z) = 3 - 4\cos z + y$$

Subject to initial conditions

$$y_{1,0} = y_1(x=0) = Y_1$$
  
 $y_{2,0} = y_2(x=0) = Y_2$ 

### Systems of Equations – RK4 Example

Solve for slopes

$$k_{i,j}$$

ith value of k for the jth dependant variable

For RK-4 i=1,2,3 and 4 while  $j=1,2,\ldots$  number of dependant variables

### Systems of Equations – RK4 Example

Solve for slopes Start with i=0  $k_{1,1} = f_1(x_i, y_{1i}, y_{2i})$ The initial condition  $k_{2,2} = f_2(x_i, y_{1i}, y_{2i})$   $k_{2,1} = f_1\left(x_i + \frac{1}{2}h, y_{1i} + \frac{1}{2}k_{11}h, y_{2i} + \frac{1}{2}k_{12}\right)$   $k_{2,2} = f_2\left(x_i + \frac{1}{2}h, y_{1i} + \frac{1}{2}k_{11}h, y_{2i} + \frac{1}{2}k_{12}h\right)$   $k_{3,1} = f_1\left(x_i + \frac{1}{2}h, y_{1i} + \frac{1}{2}k_{2i}h, y_{2i} + \frac{1}{2}k_{22}h\right)$   $k_{3,2} = f_2\left(x_i + \frac{1}{2}h, y_{1i} + \frac{1}{2}k_{21}h, y_{2i} + \frac{1}{2}k_{22}h\right)$   $k_{4,1} = f_1(x_i + h, y_{1i} + k_{31}h, y_{2i} + k_{32}h)$   $k_{4,2} = f_2(x_i + h, y_{1i} + k_{31}h, y_{2i} + k_{32}h)$ 

### Systems of Equations – RK4 Example

$$\begin{split} y_{1,i+1} &= y_{1i} + \frac{1}{6} \big( k_{11} + 2 k_{21} + 2 k_{31} + k_{41} \big) h \\ y_{2,i+1} &= y_{2i} + \frac{1}{6} \big( k_{12} + 2 k_{22} + 2 k_{32} + k_{42} \big) h \end{split}$$

Show Matlab Systems of Equations RK4 Example

$$\frac{dy_1}{dx} = y_2 y_1(x=0) = 4 \frac{dy_2}{dx} = -\frac{y_2}{2} - 7y_1 y_2(x=0) = 0$$

### Matlab ODE solvers

ODE23 and ODE45 are RK solvers that combine  $2^{nd}$  and  $3^{rd}$  order RK and  $4^{th}$  and  $5^{th}$  order RK methods.

See Chapter 8 in Palm Text.