
\qquad
\qquad

Orientation

- ODE's
- Motivation
- Mathematical Background
- Runge-Kutta Methods
- Euler's Method
- Huen and Midpoint methods

Lesson Objectives

- Be able to classify ODE's and distinguish ODE's from PDE's.
- Be able to reduce nth order ODE's to a system of first order ODE's.
- Understand the visual representations of Euler's method.
- Know the relationship of Euler's Method to the Taylor series expansion and the insight it provides regarding the error of the method
- Understand the difference between local and global truncation errors for Euler's method.
- Very Common in Engineering
- Fundamental laws are based on changes in physical properties
- $\mathrm{Q}=-\mathrm{k} \mathrm{dT} / \mathrm{dx}$ Fourier's Law
- F= d/dt (mv) Newton's $2^{\text {nd }}$ law
- Many ODEs can be solved analytically, however more complex ones must be attacked numerically

Differential Equations: Classification

- Order of a differential Equation.
- Ordinary vs. Partial differential equations.
- Linear/Non-linear

$$
\begin{gathered}
y^{\prime}-y=0 \\
\mathrm{mx} \mathrm{x}^{\prime \prime}+\mathrm{cx}+\mathrm{kx}=\mathrm{F}(\mathrm{t}) \\
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0 \\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=F(t)
\end{gathered}
$$

ODEs - Numerical Solutions

- Concentrate on $1^{\text {st }}$ order ODE’s because
\qquad higher order ODE's can be reduced to a set of $1^{\text {st }}$ order ODEs \qquad
- $1^{\text {st }}$ Order ODE $\rightarrow \mathrm{F}\left(\mathrm{x}, \mathrm{y}, \mathrm{y}{ }^{\prime}\right)=0$ \qquad

$$
y^{\prime}-y+x=0
$$

- $2^{\text {nd }}$ Order ODE $\rightarrow \mathrm{F}\left(\mathrm{x}, \mathrm{y}, \mathrm{y}^{\prime}, \mathrm{y}{ }^{\prime \prime}\right)=0$

$$
y^{\prime}+2 x y^{\prime}=e^{x} \cos (y)
$$

Ordinary Differential Equations

- Reducing higher order differential equations to a system of first order equations:

$$
m x^{\prime \prime}+c x^{\prime}+k x=0
$$

Define a new variable

$$
y=\frac{d x}{d t}
$$

\qquad
\qquad

$$
m y^{\prime}+c y+k x=0
$$

Ordinary Differential Equations

- Reducing higher order differential equations to a system of first order equations:
$m y^{\prime}+c y+k x=0$

$$
\begin{aligned}
y & =\frac{d x}{d t} \\
\frac{d y}{d t} & =-\left(\frac{c y+k x}{m}\right)=0
\end{aligned}
$$

In general, an $n^{\text {th }}$ order ODE can be reduced to $n 1^{\text {st }}$ order ODEs (with appropriate boundary or initial conditions)

ODEs - Numerical Solutions

- Initial Value Problems: all conditions are specified at the same value of the independent variable ($t=0$ or $x=0$). Provide a unique solution (for an nth order differential equation, n conditions are required).
- Boundary Value Problems: conditions are specified at different values of the independent variable, I.e.,

$$
y(x=0)=0 \& y(x=4)=3
$$

\qquad

Answer the following

- What is (are) the dependent variable(s)?
- What is (are) the independent variable (s)?
- Is this a ODE or PDE?
- What order is this differential equation?
- Is this linear or nonlinear?

$$
\frac{\mathrm{dC}}{\mathrm{dt}}=\frac{\mathrm{d}^{2} \mathrm{C}}{\mathrm{dx}^{2}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Runge-Kutta Methods - CH 25	
Solve ODEs of the form: $\frac{d y}{d x}=f(x, y)$ Can be solved Numerically using: $y_{i+1}=y_{i}+\phi h$ $\phi=$ slope estimate $h=$ step size $y_{i}=$ current value of the dependant variable y_{i+1} estimate of dependant variable over dist. H Formula can be applied step by step to trace out the solution trajectory.	

Euler's Method
The first derivative provides the slope at x_{i}
$\frac{d y}{d x}=y^{\prime}=\phi=f(x, y)$
Hence, $y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h$
Euler's Method

Note: the slope at the beginning of the interval is taken
as the average slope over the entire interval

Euler's Method example

Use Euler's method to numerically integrate $y^{\prime}=-2 x^{3}+12 x^{2}-20 x+8.5$
from $x=0$ to $x=4$ with a step size of 0.5 . The initial condition at $\mathrm{x}=0$ is $\mathrm{y}=1$.
\qquad

Euler's Method - Error Assessment
2 Sources of Error:

1. Truncation - Taylor Series
2. Round-Off - significant Digits
\qquad

Truncation Error: 2 parts

1. Local - method application over 1 step
\qquad
2. Global - accumulated additive error over multiple applications
Error

```
Euler's Method - Error Assessment
Local Truncation Error:
- First, derive Euler's method from T-S Expansion to represent: \(y^{\prime}=f(x, y)\) with \(h=\left(x_{i+1}-x_{i}\right)\)
\(y_{i+1}=y_{i}+y_{i}^{\prime} h+\frac{y^{\prime \prime}{ }_{i} h^{2}}{2!}+\ldots+\frac{y^{\prime \prime}{ }_{i} h^{n}}{n!}+R_{n}\)
Now let \(y^{\prime}=f(x, y)\)
\(\underbrace{y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right)}_{\text {Euler's Method }} h+\underbrace{\frac{f^{\prime}\left(x_{i}, y_{i}\right) h^{2}}{2!}}_{\text {Next term }}+\ldots+\frac{f^{n-1}\left(x_{i}, y_{i}\right) h^{n}}{n!}+O\left(h^{n+1}\right)\)
\[
\therefore E_{a}=O\left(h^{2}\right) \rightarrow \begin{aligned}
& \text { Local truncation } \\
& \text { Error }
\end{aligned}
\]
```


Euler’s Method - Error Assesment

Notes:

- This is only the local truncation error
- The global truncation error is $O(h)$
- If the function is a first order polynomial the method is exact \rightarrow " $1^{\text {st }}$ Order Method"
- The error pattern holds for higher order methods ($n^{\text {th }}$ order method), That is:
- They yield exact results for $n^{\text {th }}$ order polynomial
- Local truncation error is $\mathrm{O}\left(h^{n+1}\right)$
- Global truncation error is $\mathrm{O}\left(h^{n}\right)$

Matlab Pseudocode for Euler's Method

'set integration range
'initialize variables
'set step size
'loop to generate x array
‘loop to implement Euler’s Method
'display results

Matlab Pseudocode for Euler's Method
'set integration range
'initialize variables
'set step size
'loop to generate x array
'loop to implement Euler's Method
'display results

\qquad

We have learned

- How to classify differential equations
- How to reduce nth order ODE's to a system of $1^{\text {st }}$ order ODE's.
- The visual representation of Euler's method.
- The relationship between the Taylor series expansion and Euler's Method
- The difference between global and local truncation error in Euler's Method.

Euler’s Method - Beyond Error

- Convergence: In the absence of Round-off Errors if our numerical solution approaches the exact solution as the step size h is reduced, it is said to be convergent
- Stability: Depends on the method and the differential equation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Euler’s Method - Stability

- A numerical method is unstable if the error grows without bound (e.g. exponential growth) for a problem in which the exact solution is bounded.
- Can depend on the method as well as the differential equation.
- Example:

$$
\begin{aligned}
& \frac{d y}{d x}=\lambda y \\
& y=y_{0} e^{e x}
\end{aligned}
$$

$$
\left(y_{i+1}=y_{i}+\lambda y_{i} h=y_{i}(1+\lambda h)\right.
$$

Euler $y_{1}=y_{0}(1+\lambda h)$
Method $\quad y_{2}=y_{1}(1+\lambda h)=y_{0}(1+\lambda h)(1+\lambda h)=y_{0}(1+\lambda h)^{2}$
$y_{n}=y_{0}(1+\lambda h)^{n}$
Euler's method is conditionally stable for:

$$
|1+\lambda h| \leq 1
$$

Euler's Method - Stability

$$
|1+\lambda h| \leq 1
$$

This Implies

$$
\begin{aligned}
& \lambda<0 \\
& h \leq \frac{2}{|\lambda|}
\end{aligned}
$$

A numerical Method is unconditionally stable if it is stable for any values of h and other parameter is the differential equation

Huen’s Method - "Predictor - Corrector" Approach

1. Begin as with Euler:

$$
y_{i+1}^{o}=y_{i}+f\left(x_{i}, y_{i}\right) h \longrightarrow \text { Predictor Equation }
$$

2. Use to estimate slope at the end of the interval, h

$$
y_{i+1}^{\prime}=f\left(x_{i+1}, y_{i+1}^{o}\right)
$$

3. Calculate an average slope

$$
\overline{y^{\prime}}=\frac{f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{o}\right)}{2}
$$

4. Extrapolate linearly from y_{i} to y_{i+1}
$y_{i+1}=y_{i}+\frac{f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{o}\right)}{2} h \longrightarrow$ Corrector Equation
\qquad

Huen’s Method - Iteration step

Since y_{i+1} is on both sides of the corrector equation it can be applied iteratively as:

Note:
-This iterative procedure does not converge on the true answer -Converges to a finite truncation error

Huen's Method - Example

Solve: $y^{\prime}=x-y$ Subject to the I.C. $y(x=0)=0$ at $x=0.4$ with $h=0.4$ using Heun's method 1. Begin with Predictor Equation ($i=0$, for initial conditions):

$$
y_{i+1}^{o}=y_{i}+f\left(x_{i}, y_{i}\right) h
$$

$$
y_{1}^{o}=y_{0}+f\left(x_{0}, y_{0}\right) h
$$

$$
y_{1}^{o}=y_{0}+\left(x_{0}-y_{0}\right) h=0
$$

2. Calculate an average slope

$$
\overline{y^{\prime}}=0.5\left(f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{o}\right)\right)
$$

\qquad
\qquad
\qquad

$$
\overline{y^{\prime}}=0.5\left(\left(x_{0}-y_{0}\right)+\left(x_{1}, y_{1}^{o}\right)\right)
$$

\qquad

$$
\overline{y^{\prime}}=0.5((0-0)+(0.4-0))=0.2
$$

\qquad
4. Use corrector equation

$$
\begin{aligned}
y_{i+1} & =y_{i}+0.5\left(f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{o}\right)\right) h \\
y_{1} & =0+(0.2) 0.4=0.08
\end{aligned}
$$

Huen's Method - Example

Solve: $y^{\prime}=x-y$ Subject to the I.C. $y(x=0)=0$ at $\mathrm{x}=0.4$ with $\mathrm{h}=0.4$ using Heun's method

Exact Solution: $\quad y_{e}=x+e^{-x}-1$
At $\mathrm{x}=0.4 \quad y_{e}=0.4+e^{-0.4}-1=0.07032$
True Error $\longrightarrow E_{t}=\left|\frac{.07032-.08}{.07032}\right| \bullet 100 \%=13 \%$

- Method is exact for $2^{\text {nd }}$ order polynomials
- $2^{\text {nd }}$ order accurate
- Local truncation error is $\mathrm{O}\left(h^{3}\right)$
- Global truncation error is $\mathrm{O}\left(h^{2}\right)$

Huen's Method - Example

Solve: $\quad y^{\prime}=x-y \quad$ Subject to the I.C. $y(x=0)=0$ at $\mathrm{x}=0.4$ with $\mathrm{h}=0.4$ using Heun's method

Exact Solution: $y_{e}=x+e^{-x}-1$
At $\mathrm{x}=0.4 \quad y_{e}=0.4+e^{-0.4}-1=0.07032$
True Error $\longrightarrow E_{t}=\left|\frac{.07032-.08}{.07032}\right| \cdot 100 \%=13 \%$

- Method is exact for $2^{\text {nd }}$ order polynomials
- $2^{\text {nd }}$ order accurate
- Local truncation error is $\mathrm{O}\left(h^{3}\right)$
-Global truncation error is $\mathrm{O}\left(h^{2}\right)$
Compare to Euler?

Huen’s Method - Matlab Code Example

See matlab code

Note that if y^{\prime} is only a function of the independent variable x, there is no need to iterate and the following equation holds for Huen's method:

$$
y_{i+1}=y_{i}+\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2} h \quad \begin{aligned}
& \begin{array}{l}
\text { Directly related } \\
\text { to the } \\
\text { trapezoidal rule }
\end{array}
\end{aligned}
$$

Huen's Method - Matlab Code Example
See matlab code
Note that if y ' is only a function of the independent variable x, there in no need to oterate and the following equation holds for Huen's method:
$y_{i+1}=y_{i}+\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2} h \ldots$

\qquad

Runge-Kutta Methods - CH 25
Can achieve Taylor Series accuracy without evaluating higher order derivatives.

General form: $\quad y_{i+1}=y_{i}+\phi\left(x_{i}, y_{i}, h\right) h$
$\phi\left(x_{i}, y_{i}, h\right)$ - Increment function $\&$ is like a slope over the interval
$\phi=a_{1} k_{1}+a_{2} k_{2}+\ldots+a_{n} k_{n} \quad \cdot a$'s are constants $\& k$'s are recurrence relationships -n=1 \rightarrow Euler's method

Runge-Kutta Methods - CH 25

Can achieve Taylor Series accuracy without evaluating higher order derivatives.

General form: $\quad y_{i+1}=y_{i}+\phi\left(x_{i}, y_{i}, h\right) h$
$\phi\left(x_{i}, y_{i}, h\right)$ - Increment function $\&$ is like a slope over the interval
$\phi=a_{1} k_{1}+a_{2} k_{2}+\ldots+a_{n} k_{n} \quad \cdot a$'s are constants $\& k$'s are
$k_{1}=f\left(x_{i}, y_{i}\right) \quad$ recurrence relationships
$k_{2}=f\left(x_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right)$
$k_{3}=f\left(x_{i}+p_{2} h, y_{i}+q_{21} k_{1} h+q_{22} k_{2} h\right)$
$k_{n}=f\left(x_{i}+p_{n-1} h, y_{i}+q_{n-1,1} k_{1} h+q_{n-1,2} k_{2} h+\ldots+q_{n-1, n-1} k_{n-1} h\right)$

Runge-Kutta Methods

To Determine the final form of (1)

1. Select n
2. Evaluate a 's, p 's, q 's by setting the general form equal to terms in the T-S expansion.
3. For low-order forms

- Number of terms $n=$ order of the method
- Local truncation error is $O\left(h^{n+1}\right)$
- Global truncation error is $O\left(h^{n}\right)$
\qquad

$2^{\text {nd }}$ - Order Runge-Kutta Methods		$\begin{aligned} & \text { See Box } \\ & 25.1 \text { in } \end{aligned}$ Text
$\text { General Form: } \begin{align*} & y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}\right) h \tag{2}\\ & k_{1}=f\left(x_{i}, y_{i}\right) \\ & k_{2}=f\left(x_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right) \end{align*}$		
By setting (2) equal to a T-S expansion through the $2^{\text {nd }}$ order term, we can solve for $a_{1}, a_{2}, p_{1}, q_{11}$		
$\left.\begin{array}{l} a_{1}+a_{2}=1 \\ a_{2} p_{1}=1 / 2 \\ a_{2} q_{11}=1 / 2 \end{array}\right\}$	$\underset{\text { Specify } a_{2} \text { value }}{3 \text { Eqn } \& ~ \text { unknows }}\left\{\begin{array}{l} a_{1}= \\ p_{1}= \\ q_{11}= \end{array}\right.$	$\left\{\begin{array}{l} a_{1}=1-a_{2} \\ p_{1}=1 /\left(2 a_{2}\right) \\ q_{11}=1 /\left(2 a_{2}\right) \end{array}\right.$
*Since there are an infinite number of choices for a_{2} there will be an infinite number of $2^{\text {nd }}$ order R-K Methods		

$2^{\text {nd }}$ - Order Runge-Kutta Methods

\qquad
\qquad
\qquad
By setting (2) equal to a T-S expansion through the $2^{\text {nd }}$ order term, we can solve for $a_{1}, a_{2}, p_{1}, q_{11}$ \qquad
\qquad
\qquad
*Since there are an infinite number of choices for a_{2} there will be an infinite number of $2^{\text {nd }}$ order $R-K$ Methods
\qquad
A) Huen Method without iteration

$$
\begin{aligned}
& \left(a_{2}=1 / 2\right): a_{1}=1 / 2, p_{1}=1, q_{11}=1 \\
& y_{i+1}=y_{i}+\left(\frac{1}{2} k_{1}+\frac{1}{2} k_{2}\right) h \\
& k_{1}=f\left(x_{i}, y_{i}\right) \\
& k_{2}=f\left(x_{i}+h, y_{i}+k_{1} h\right)
\end{aligned}
$$

\qquad
\qquad
\qquad
k_{1} slope at start of interval
$a_{1}=1-a_{2}$
k_{2} slope at end of interval
$p_{1}=1 /\left(2 a_{2}\right)$
Global Truncation Error ~ O (h^{2})
$q_{11}=1 /\left(2 a_{2}\right)$

$2^{\text {nd }}$ - Order Runge-Kutta Methods

\qquad
B) Midpoint Method $\left(a_{2}=1\right)$: $a_{1}=0, p_{1}=1 / 2, q_{11}=1 / 2$

$y_{i+1}=y_{i}+k_{2} h$	
$k_{1}=f\left(x_{i}, y_{i}\right)$	
$k_{2}=f\left(x_{i}+0.5 h, y_{i}+0.5 k_{1} h\right)$	
	$a_{1}=1-a_{2}$
	$p_{1}=1 /\left(2 a_{2}\right)$
Global Truncation Error $\sim O\left(h^{2}\right)$	$q_{11}=1 /\left(2 a_{2}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$2^{\text {nd }}$ - Order Runge-Kutta Methods
C) Ralston's Method ($a_{2}=2 / 3$): $a_{1}=1 / 3, p_{1}=3 / 4, q_{11}=3 / 4$

$$
\begin{aligned}
& y_{i+1}=y_{i}+\left(\frac{1}{3} k_{1}+\frac{2}{3} k_{2}\right) h \\
& k_{1}=f\left(x_{i}, y_{i}\right) \\
& k_{2}=f\left(x_{i}+0.75 h, y_{i}+.75 k_{1} h\right) \\
& a_{1}=1-a_{2} \\
& p_{1}=1 /\left(2 a_{2}\right) \\
& q_{11}=1 /\left(2 a_{2}\right)
\end{aligned}
$$

$4^{\text {th }}-$ Order Runge-Kutta Methods -

Example: Use classical RK4 to determine $y @ x=0.4$ for $y^{\prime}=x-y$ and $h=0.4$

$$
y=x+e^{-x}-1
$$

$y(0.4)=0.070320$
RK4 Solution:
$\left.\begin{array}{l}x_{0}=0 \\ y_{0}=0\end{array}\right\}$ Initial Conditions
$k_{1}=f\left(x_{i}, y_{i}\right)=x_{0}-y_{0}=0$
$k_{2}=f\left(x_{i}+0.5 h, y_{i}+.5 k_{1} h\right)=(0+0.4 / 2)-(0+0)=0.2$
$k_{3}=f\left(x_{i}+0.5 h, y_{i}+.5 k_{2} h\right)=(0+0.4 / 2)-(0+(0.5)(0.2)(0.4))=0.16$
$k_{4}=f\left(x_{i}+0.5 h, y_{i}+k_{3} h\right)=(0+0.4)-(0+0.16(0.4))=0.336$
$y_{1}=y_{0}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h=0+\frac{1}{6}(0+2(.2)+2(.16)+.336) 0.4$
$y_{1}=0.07040$
Global Truncation Error ~ O(h^{2})

\qquad

Method Comparison

- Higher order methods produce better accuracy
- Effort for the higher order methods is similar to low-order methods (much of the effort goes into evaluating the function)
- Classical $4^{\text {th }}$ order RK is most widely used as it produces accurate results with reasonable effort.

Systems of Equations

- Recall, Any $n^{t h}$ order ODE can be represented as a system of $n 1^{\text {st }}$ order ODEs

$$
\begin{aligned}
& \frac{d y_{1}}{d x}=f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
& \frac{d y_{2}}{d x}=f_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
& \vdots \\
& \frac{d y_{n}}{d x}=f_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

- To solve the system requires n initial conditions at $x=x_{0}$
Systems of Equations
- Recall, Any $n^{\text {th }}$ order ODE can be represented as a system

of $n 1^{\text {st }}$ order ODEs ${\frac{d y_{1}}{d x}=f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)}_{\frac{d y_{2}}{d x}=f_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)}^{\vdots}$\begin{tabular}{c}
$\frac{d y_{n}}{d x}=f_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)$

- To solve the system requires n initial conditions at $x=x_{0}$

\end{tabular}

\qquad

Systems of Equations - RK4 Example

$$
\begin{aligned}
& \frac{d y_{1}}{d x}=f_{1}\left(x, y_{1}, y_{2}\right) \\
& \frac{d y_{2}}{d x}=f_{2}\left(x, y_{1}, y_{2}\right)
\end{aligned}
$$

For example:
\qquad
$\frac{d y}{d x}=f_{1}(x, y, z)=-y$
$\frac{d z}{d x}=f_{2}(x, y, z)=3-4 \cos z+y$
Subject to initial conditions

$$
\begin{aligned}
& y_{1,0}=y_{1}(x=0)=Y_{1} \\
& y_{2,0}=y_{2}(x=0)=Y_{2}
\end{aligned}
$$

Systems of Equations - RK4
Solve for slopes $k_{i, j}$
ith value of k for the j th dependant variable

For RK-4 $i=1,2,3$ and 4 while $j=1,2, \ldots$ number of dependant variables

Systems of Equations - RK4 Example

$$
\begin{array}{ll}
\text { Solve for slopes } \\
\text { Start with } i=0 \\
\text { The initial condition } & k_{1,1}=f_{1}\left(x_{i}, y_{1 i}, y_{2 i}\right) \\
k_{1,2}=f_{2}\left(x_{i}, y_{1 i}, y_{2 i}\right) \\
k_{2,1}=f_{1}\left(x_{i}+\frac{1}{2} h, y_{1 i}+\frac{1}{2} k_{11} h, y_{2 i}+\frac{1}{2} k_{12}\right) \\
k_{2,2}=f_{2}\left(x_{i}+\frac{1}{2} h, y_{1 i}+\frac{1}{2} k_{11} h, y_{2 i}+\frac{1}{2} k_{12} h\right) \\
& k_{3,1}=f_{1}\left(x_{i}+\frac{1}{2} h, y_{1 i}+\frac{1}{2} k_{21} h, y_{2 i}+\frac{1}{2} k_{22} h\right) \\
& k_{3,2}=f_{2}\left(x_{i}+\frac{1}{2} h, y_{1 i}+\frac{1}{2} k_{21} h, y_{2 i}+\frac{1}{2} k_{22} h\right) \\
k_{4,1}=f_{1}\left(x_{i}+h, y_{1 i}+k_{31} h, y_{2 i}+k_{32} h\right) \\
k_{4,2}=f_{2}\left(x_{i}+h, y_{1 i}+k_{31} h, y_{2 i}+k_{32} h\right)
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Systems of Equations - RK4 Example	
Solve for slopes Start with $i=0$ The initial condition	$k_{1,1}$ $=f_{1}\left(x_{i}, y_{1 i}, y_{2 i}\right)$ $k_{1,2}$ $=f_{2}\left(x_{i}, y_{1 i}, y_{2 i}\right)$ $k_{2,1}$ $=f_{1}\left(x_{i}+\frac{1}{2} h, y_{1 i}+\frac{1}{2} k_{11} h, y_{2 i}+\frac{1}{2} k_{12}\right)$ $k_{2,2}$ $=f_{2}\left(x_{i}+\frac{1}{2} h, y_{1 i}+\frac{1}{2} k_{11} h, y_{2 i}+\frac{1}{2} k_{12} h\right)$ $k_{3,1}$ $=f_{1}\left(x_{i}+\frac{1}{2} h, y_{1 i}+\frac{1}{2} k_{21} h, y_{2 i}+\frac{1}{2} k_{22} h\right)$ $k_{3,2}$ $=f_{2}\left(x_{i}+\frac{1}{2} h, y_{1 i}+\frac{1}{2} k_{21} h, y_{2 i}+\frac{1}{2} k_{22} h\right)$ $k_{4,1}$ $=f_{1}\left(x_{i}+h, y_{1 i}+k_{31} h, y_{2 i}+k_{32} h\right)$ $k_{4,2}$ $=f_{2}\left(x_{i}+h, y_{1 i}+k_{31} h, y_{2 i}+k_{32} h\right)$

\qquad

Matlab ODE solvers
ODE23 and ODE45 are RK solvers that combine
$2^{\text {nd }}$ and 3 3rd order RK and 4th
methods. $5^{\text {th }}$ order RK
See Chapter 8 in Palm Text.

