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Ordinary Differential Equations

Ch. 25

Orientation

• ODE’s
– Motivation
– Mathematical Background

• Runge-Kutta Methods
– Euler’s Method
– Huen and Midpoint methods

Lesson Objectives
• Be able to classify ODE’s and distinguish ODE’s from 

PDE’s.  
• Be able to reduce nth order ODE’s to a system of first 

order ODE’s.
• Understand the visual representations of Euler’s method.
• Know the relationship of Euler’s Method to the Taylor 

series expansion and the insight it provides regarding the 
error of the method

• Understand the difference between local and global 
truncation errors for Euler’s method.
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Ordinary Differential Equations: Motivation

• Very Common in Engineering
• Fundamental laws are based on changes in 

physical properties
– Q =-k dT/dx Fourier’s Law
– F= d/dt (mv) Newton’s 2nd law

• Many ODEs can be solved analytically, 
however more complex ones must be 
attacked numerically

Differential Equations: Classification
• Order of a differential Equation.
• Ordinary vs. Partial differential equations.
• Linear/Non-linear
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mx’’ + cx’ + kx = F(t)

ODEs – Numerical Solutions

• Concentrate on 1st order ODE’s because 
higher order ODE’s can be reduced to a set 
of 1st order ODEs

• 1st Order ODE F(x,y,y’)=0

• 2nd Order ODE F(x,y,y’,y’’)=0
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Ordinary Differential Equations
• Reducing higher order differential equations 

to a system of first order equations:

dt
dxy =

Define a new variable

Substitute into the original DE

mx’’ + cx’ + kx = 0

my’ + cy + kx = 0

Ordinary Differential Equations
• Reducing higher order differential equations 

to a system of first order equations:

dt
dxy =

0=⎟
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kxcy
dt
dy

In general, an nth order ODE can be reduced 
to n 1st order ODEs (with appropriate 
boundary or initial conditions)

my’ + cy + kx = 0

ODEs – Numerical Solutions

• Initial Value Problems: all conditions are 
specified at the same value of the 
independent variable (t=0 or x=0). Provide 
a unique solution (for an nth order 
differential equation,  n conditions are 
required).

• Boundary Value Problems: conditions are 
specified at different values of the 
independent variable, I.e.,

y(x=0)=0 & y(x=4)=3



4

Answer the following

• What is (are) the dependent variable(s)?
• What is (are) the independent variable (s)?
• Is this a ODE or PDE?
• What order is this differential equation?
• Is this linear or nonlinear?

dC d2C
dt dx2

=

Leonhard Euler

Courtesy of Wikipedia Encylopedia

y = f (x)

Runge-Kutta Methods – CH 25

Solve ODEs of the form:

Can be solved Numerically using:

φ = slope estimate
h = step size
yi = current value of the dependant variable
yi+1 estimate of dependant variable over dist. H
Formula can be applied step by step to trace out the 

solution trajectory.
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Euler’s Method 

The first derivative provides the slope at xi

Hence,

),(' yxfy
dx
dy

=== φ

hyxfyy iiii ),(1 +=+ Euler’s Method

Note: the slope at the beginning of the interval is taken
as the average slope over the entire interval

Euler’s Method example

Use Euler’s method to numerically integrate 
y’ = -2x3 + 12x2 - 20x +8.5

from x=0 to x=4 with a step size of 0.5.  The 
initial condition at x=0 is y=1.

Euler’s Method – Error Assessment
2 Sources of Error:

1. Truncation – Taylor Series
2. Round-Off – significant Digits

Truncation Error: 2 parts
1. Local – method application over  1 step
2. Global – accumulated additive error over 

multiple applications

Number of steps

Error

RO ErrorTruncation
Error

Total Error



6

Euler’s Method – Error Assessment
Local Truncation Error:

• First, derive Euler’s method from T-S Expansion to 
represent: with ),(' yxfy =
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Now let ),(' yxfy =

Euler’s Method Next term

( )2hOE a =∴
Local truncation
Error

Euler’s Method – Error Assesment
Notes: 

• This is only the local truncation error

• The global truncation error is O(h)

• If the function is a first order polynomial the method 
is exact “1st Order Method”

• The error pattern holds for higher order methods (nth

order method) , That is:

• They yield exact results for nth order polynomial
• Local truncation error is O(hn+1)
• Global truncation error is O(hn)

Matlab Pseudocode for Euler’s Method

‘set integration range
‘initialize variables
‘set step size 
‘loop to generate x array
‘loop to implement Euler’s Method
‘display results
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We have learned

– How to classify differential equations
– How to reduce nth order ODE’s to a system of 

1st order ODE’s.
– The visual representation of Euler’s method.
– The relationship between the Taylor series 

expansion and Euler’s Method
– The difference between global and local 

truncation error in Euler’s Method.

Euler’s Method – Beyond Error

• Convergence: In the absence of Round-off Errors if 
our numerical solution approaches the exact solution 
as the step size h is reduced, it is said to be 
convergent

• Stability: Depends on the method and the 
differential equation
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Euler’s Method – Stability
• A numerical method is unstable if the error grows without bound  

(e.g. exponential growth) for a problem in which the exact solution 
is bounded.

• Can depend on the method as well as the differential equation.
• Example:
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Euler’s method is conditionally stable for:

11 ≤+ hλ

Euler
Method

Euler’s Method – Stability
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This Implies

A numerical Method is unconditionally stable if it is 
stable for any values of h and other parameter is the 
differential equation

Huen’s Method – “Predictor – Corrector” Approach 

),(' 111
o
iii yxfy +++ =

hyxfyy iii
o
i ),(1 +=+ Predictor Equation

1. Begin as with Euler:

2. Use to estimate slope at the end of the interval, h

3. Calculate an average slope
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4. Extrapolate linearly from yi to yi+1
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Huen’s Method – “Predictor – Corrector” Approach 

x
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f(xi,yi)

f(xi+1,yo
i+1)
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Slope 1

Slope 2

Predictor Step

Corrector Step
Use average slope to
Obtain new estimate

Average Slope
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Huen’s Method – Iteration step 
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Since yi+1 is on both sides of the corrector equation it 
can be applied iteratively as:

Note: 
•This iterative procedure does not converge on the true answer
•Converges to a finite truncation error

Huen’s Method – Example 

hyxfyy iii
o
i ),(1 +=+

1. Begin with Predictor Equation (i=0, for initial conditions):

2. Calculate an average slope
( )),(),(5.0' 11

o
iiii yxfyxfy +++=

4. Use corrector equation

( )hyxfyxfyy o
iiiiii ),(),(5.0 111 +++ ++=

hyxfyyo ),( 0001 +=
0)( 0001 =−+= hyxyyo

( )),()(5.0' 1100
oyxyxy +−=

( ) 2.0)04.0()00(5.0' =−+−=y

08.04.0)2.0(01 =+=y

yxy −=' 0)0( ==xySolve: Subject to the I.C.
at x=0.4 with h=0.4 using Heun’s method
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Huen’s Method – Example 
yxy −=' 0)0( ==xySolve: Subject to the I.C.

at x=0.4 with h=0.4 using Heun’s method

Exact Solution: 1−+= − x
e exy

At x = 0.4 07032.014.0 4.0 =−+= −ey e

%13%100
07032.

08.07032.
=•

−
=tETrue Error

• Method is exact for 2nd order polynomials
• 2nd order accurate
• Local truncation error is O(h3)
•Global truncation error is O(h2)

Huen’s Method – Example 
yxy −=' 0)0( ==xySolve: Subject to the I.C.

at x=0.4 with h=0.4 using Heun’s method

Exact Solution: 1−+= − x
e exy

At x = 0.4 07032.014.0 4.0 =−+= −ey e

%13%100
07032.

08.07032.
=•

−
=tETrue Error

• Method is exact for 2nd order polynomials
• 2nd order accurate
• Local truncation error is O(h3)
•Global truncation error is O(h2) Compare to Euler?

Huen’s Method – Matlab Code Example 

Note that if y’ is only a function of the independent variable 
x, there is no need to iterate and the following equation 
holds for Huen’s method:

hxfxfyy ii
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See matlab code

Directly related 
to the 
trapezoidal rule
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Runge-Kutta Methods – CH 25
Can achieve Taylor Series accuracy without evaluating higher 
order derivatives.

General form: ( )hhyxyy iiii ,,1 φ+=+

( )hyx ii ,,φ - Increment function & is like a slope over the interval

nnkakaka +++= ...2211φ • a’s are constants & k’s are 
recurrence relationships
•n=1 Euler’s method

(1)

Runge-Kutta Methods – CH 25
Can achieve Taylor Series accuracy without evaluating higher 
order derivatives.

General form: ( )hhyxyy iiii ,,1 φ+=+

( )hyx ii ,,φ - Increment function & is like a slope over the interval

nnkakaka +++= ...2211φ • a’s are constants & k’s are 
recurrence relationships
•n=1 Euler’s method),(1 ii yxfk =

),( 11112 hkqyhpxfk ii ++=
),( 22212123 hkqhkqyhpxfk ii +++=

)...,( 11,122,111,11 hkqhkqhkqyhpxfk nnnnninin −−−−−− +++++=

(1)

Runge-Kutta Methods
To Determine the final form of (1)

1. Select n

2. Evaluate a’s,p’s,q’s by setting the general form equal to 
terms in the T-S expansion.

3. For low-order forms 
• Number of terms n=order of the method
• Local truncation error is O(hn+1)
• Global truncation error is O(hn)



12

2nd- Order Runge-Kutta Methods

General Form: ( )hkakayy ii 22111 ++=+

),(1 ii yxfk =
),( 11112 hkqyhpxfk ii ++=

By setting (2) equal to a T-S expansion through the 2nd order 
term, we can solve for a1,a2,p1,q11

(2)
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qa
pa

aa
3 Eqns & 4 unknows
Specify a2 value

( )
( )211

21

21

2/1
2/1

1

aq
ap

aa

=
=

−=

*Since there are an infinite number of choices for a2 there will be 
an infinite number of 2nd order R-K Methods

See Box
25.1 in
Text

2nd- Order Runge-Kutta Methods

A) Huen Method without iteration
(a2 = ½ ): a1 = ½ , p1 = 1,q11 =1
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k1 slope at start of interval
k2 slope at end of interval ( )
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Global Truncation Error ~ O(h2)

2nd- Order Runge-Kutta Methods

B) Midpoint Method (a2 = 1 ): a1 = 0 , p1 = 1/2, q11 =1/2

hkyy ii 21 +=+
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)5.0,5.0( 12 hkyhxfk ii ++=

( )
( )211

21

21

2/1
2/1

1

aq
ap

aa

=
=

−=

Global Truncation Error ~ O(h2)
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2nd- Order Runge-Kutta Methods

C) Ralston’s Method (a2 = 2/3 ): a1 = 1/3 , p1 = 3/4, q11 =3/4

),(1 ii yxfk =
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Global Truncation Error ~ O(h2)

4th - Order Runge-Kutta Methods

Classical 4th order RK Method – most commonly used RK 
method
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Slope Estimates:

Global Truncation Error ~ O(h4)

4th - Order Runge-Kutta Methods –

Recall the exact solution is:

0),( 001 =−== yxyxfk ii

2.0)00()2/4.00()5.,5.0( 12 =+−+=++= hkyhxfk ii
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RK4 Solution:

Example: Use classical RK4 to determine y @ x=0.4 for y’=x-y and
h=0.4

0
0

0

0

=
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y
x

Initial Conditions
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4th - Order Runge-Kutta Methods –

Error:

Example: Use classical RK4 to determine y @ x=0.4 for y’=x-y and
h=0.4

%11.%100
07032.

07040.07032.
=•

−
=tE

See Matlab Sample Matlab RK4 method

Method Comparison

• Higher order methods produce better 
accuracy

• Effort for the higher order methods is 
similar to low-order methods (much of the 
effort goes into evaluating the function)

• Classical 4th order RK is most widely used 
as it produces accurate results with 
reasonable effort.

Systems of Equations

• Recall, Any nth order ODE can be represented as a system 
of n 1st order ODEs

• To solve the system requires n initial conditions at x = x0
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Systems of Equations – RK4 Example
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Subject to initial conditions
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Systems of Equations – RK4 Example

Solve for slopes
jik ,

ith value of k for the jth dependant variable

For RK-4 i=1,2,3 and 4 while j=1, 2, … number of 
dependant variables

Systems of Equations – RK4 Example
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Solve for slopes
Start with i=0
The initial condition
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Systems of Equations – RK4 Example
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Show Matlab Systems of Equations RK4 Example
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Matlab ODE solvers

ODE23 and ODE45 are RK solvers that combine
2nd and 3rd order RK and 4th and 5th order RK 
methods.

See Chapter 8 in Palm Text.


