Ordinary Differential Equations

Ch. 25

Orientation

ODE’s

— Motivation

— Mathematical Background
Runge-Kutta Methods

— Euler’s Method

— Huen and Midpoint methods

Lesson Objectives

Be able to classify ODE’s and distinguish ODE’s from
PDE’s.

Be able to reduce nth order ODE’s to a system of first
order ODE’s.

Understand the visual representations of Euler’s method.
Know the relationship of Euler’s Method to the Taylor
series expansion and the insight it provides regarding the
error of the method

Understand the difference between local and global
truncation errors for Euler’s method.




Ordinary Differential Equations: Motivation

» Very Common in Engineering

» Fundamental laws are based on changes in
physical properties
- Q=-kdT/dx Fourier’s Law
— F=d/dt (mv) Newton’s 2 law

» Many ODEs can be solved analytically,
however more complex ones must be
attacked numerically

Differential Equations: Classification
* Order of a differential Equation.
* Ordinary vs. Partial differential equations.
* Linear/Non-linear
y-y=0
mx” + cx’ + kx = F(t)
IT T _

pve + o 0

ODESs — Numerical Solutions

» Concentrate on 15t order ODE’s because
higher order ODE’s can be reduced to a set
of 15t order ODEs

« 15t Order ODE >F(x,y,y’)=0
y'-y+x=0
« 2"d Order ODE >F(x,y,y’,y’")=0

y'"'+2xy'= e cos(y)




Ordinary Differential Equations

 Reducing higher order differential equations
to a system of first order equations:

mx” + cx’ + kx =0
Define a new variable
dx
T
Substitute into the original DE

my +cy +kx =0

Ordinary Differential Equations
* Reducing higher order differential equations
to a system of first order equations:

_dx
my' +cy + kx =0 y_dt
dy :7(cy+kxj20
dt m
In general, an nt" order ODE can be reduced

to n 1%t order ODEs (with appropriate
boundary or initial conditions)

ODESs — Numerical Solutions

* Initial Value Problems: all conditions are
specified at the same value of the
independent variable (t=0 or x=0). Provide
a unique solution (for an nth order
differential equation, n conditions are
required).

» Boundary Value Problems: conditions are
specified at different values of the
independent variable, l.e.,

y(x=0)=0 & y(x=4)=3




Answer the following

What is (are) the dependent variable(s)?
What is (are) the independent variable (s)?
Is this a ODE or PDE?
What order is this differential equation?
Is this linear or nonlinear?
dac _ e
dt dx?

Leonhard Euler

y=f(x)

Courtesy of Wikipedia Encylopedia

Runge-Kutta Methods — CH 25

Solve ODEs of the form: y
dy
——= f(x,
I (x,y)
Can be solved Numerically using: Y,
i =i +4h 3 |
¢ = slope estimate /1 X; Xip1 X
h = step size N

y; = current value of the dependant variable
Y;+1 €stimate of dependant variable over dist. H

Formula can be applied step by step to trace out the
solution trajectory.




Euler’s Method

The first derivative provides the slope at x;

Hence,y,., =Y, + f (Xi , yi)h ‘—> Euler’s Method

Note: the slope at the beginning of the interval is taken
as the average slope over the entire interval

Euler’s Method example

Use Euler’'s method to numerically integrate
y' = -2x3 + 12x2 - 20x +8.5

from x=0 to x=4 with a step size of 0.5. The
initial condition at x=0 is y=1.

Euler’s Method — Error Assessment

2 Sources of Error:
1. Truncation — Taylor Series
2. Round-Off - significant Digits

Truncation Error: 2 parts
1. Local — method application over 1 step
2. Global — accumulated additive error over
multiple applications

Error

Truncation
Error

Number of steps




Euler’s Method — Error Assessment

Local Truncation Error:

« First, derive Euler’s method from T-S Expansion to
represent: y'= f(x,y) with h = (x;,, - x;)

o2 "o
Yia =Yi+VYi h+u+---+%+R

2! "

Now let y'= f(x,y)
1 2 n-1 n
PO 000" )
2 n!
Euler’s Method Next term

Via =Y+ F 06 y)h+

Local truncation

“E, = O(hz) ~ Error

Euler’s Method — Error Assesment
Notes:
« This is only the local truncation error

* The global truncation error is O(h)

« If the function is a first order polynomial the method
is exact > “1%t Order Method”

« The error pattern holds for higher order methods (nt
order method) , That is:

« They yield exact results for nt" order polynomial
 Local truncation error is O(h™*1)
« Global truncation error is O(h")

Matlab Pseudocode for Euler’s Method

‘set integration range

‘initialize variables

‘set step size

‘loop to generate x array

‘loop to implement Euler’s Method
‘display results




We have learned

— How to classify differential equations

— How to reduce nth order ODE’s to a system of
1storder ODE’s.

— The visual representation of Euler’s method.
— The relationship between the Taylor series
expansion and Euler’s Method

— The difference between global and local
truncation error in Euler’s Method.

Euler’s Method — Beyond Error

« Convergence: In the absence of Round-off Errors if
our numerical solution approaches the exact solution
as the step size h is reduced, it is said to be
convergent

« Stability: Depends on the method and the
differential equation

N




Euler’s Method — Stability

A numerical method is unstable if the error grows without bound
(e.g. exponential growth) for a problem in which the exact solution

is bounded.
«  Can depend on the method as well as the differential equation.
« Example: dy
he )
dx y
Yy =Y.® “

Yiaa=Yi t Ayih = Yi(lJr ih)
EUler yl = yo(1+ j'h)
Method y, =

=y, + Ah)
Euler’s method is conditionally stable for:

L+ 2h|<1

y, @+ Ah)=y, @+ Ah)L+ 2h)= y,@+ Ah)

Euler’s Method — Stability

L+ ah|<1

This Implies

EEEEN
IA A
eI

A numerical Method is unconditionally stable if it is

stable for any values of h and other parameter is the
differential equation

Huen’s Method - “Predictor — Corrector” Approach

1. Begin as with Euler:

yiﬂl =Y+ f (Xi , yi)h ‘—> Predictor Equation
2. Use to estimate slope at the end of the interval, h

yli+1 = f (er yi0+1)
3. Calculate an average slope
—_ Oy + F (X, Yia)
y= 2
4. Extrapolate linearly fromy; to y;,,

Via =Y+ f(x;, yi)+2f (X1 Vi) h |— Corrector Equation




Huen’s Method — “Predictor — Corrector” Approach

Slope 2
y f(x|+1'5+1)

- Predictor Step
Slope 1

EHD)

i+1 X
y
Average Slope
PREICAD ELICRITAIN
=Y 5 L
Corrector Step
Use average slope to
Obtain new estimate
X Xi+1 X

Huen’s Method - Iteration step

Since y;,, is on both sides of the corrector equation it
can be applied iteratively as:

y = oY)+ F (X Yia)
2
|
FOG YD+ T (X Vo) h
2

Yia=Yit

Note:

*This iterative procedure does not converge on the true answer
«Converges to a finite truncation error

Huen’s Method — Example
Solve: y'= X—Yy Subjecttothel.C. (X =0)=0

at x=0.4 with h=0.4 using Heun’s method
1. Begin with Predictor Equation (i=0, for initial conditions):

Yoa =Y+ (X, yi)h
Yi)=y0+f(X01y0)h
Y7 = Yo+ (X = Yo)h =0
2. gilculate an average slope
y'= 0-5(f (X, yi) + F (X, yi0+1))
V' =0.5((x = yo) + (%, vD))
y'=0.5((0-0)+(0.4-0))=0.2

4. Use corrector equation

Yia =i +0-5(f CRAR e yi0+l))h
y, =0+(0.2)0.4=0.08




Huen’s Method — Example
Solve: y'= X—Yy Subjecttothel.C. y(x=0)=0
at x=0.4 with h=0.4 using Heun’s method
Exact Solution: Y, = X+e * -1
Atx=04 Y.=0.4+e%" —-1=0.07032

07032 08|
07032 |

True Error E, :} ©100% =13%

» Method is exact for 2" order polynomials
« 2" order accurate

« Local truncation error is O(h3)

*Global truncation error is O(h?)

Huen’s Method — Example

Solve: y'= X—Yy Subjecttothel.C. Y(x=10)=0
at x=0.4 with h=0.4 using Heun’s method

x+e -1
0.4 +e7°* -1=10.07032

Exact Solution: Y.

Atx=0.4 ye =
.07032-.08
—+ E, =—————{*100% =13%
True Error t ‘ 07032 " 0 0

 Method is exact for 2 order polynomials
« 20 order accurate
« Local truncation error is O(h3)

*Global truncation error is O(h?) Compare to Euler?

Huen’s Method — Matlab Code Example

See matlab code

Note that if y” is only a function of the independent variable
X, there is no need to iterate and the following equation
holds for Huen’s method:

Directly related
Yin =Yi 2 trapezoidal rule

10



Runge-Kutta Methods — CH 25

Can achieve Taylor Series accuracy without evaluating higher
order derivatives.

General form: Y, =V, +¢(Xi Vi h)h )
qé(Xi Yis h) - Increment function & is like a slope over the interval
g=ak +ak,+..+ak, -a’sareconstants &k'sare

recurrence relationships
en=1 > Euler’s method

Runge-Kutta Methods — CH 25

Can achieve Taylor Series accuracy without evaluating higher
order derivatives.

General form: Y;,; =Y; + ¢(Xi ' Yio h)h )
¢(Xi  Yis h) - Increment function & is like a slope over the interval

¢ =ak +ak, +..+ak, ~ asareconstants & k'sare
- 104,9) o
ko = F(x + pih, y; + dyk;h)

ks = £ + PN, Y, +0ykih+0,k;h)

k,=f (Xi + pn—1h1 Yy + qn—l,lklh + qn-l,zkzh +..t+ qn—l,n—lkn—lh

n

Runge-Kutta Methods

To Determine the final form of (1)
1. Selectn

2. Evaluate a’s,p’s,q’s by setting the general form equal to
terms in the T-S expansion.

3. For low-order forms
¢ Number of terms n=order of the method
* Local truncation error is O(h"*1)
« Global truncation error is O(h")

11



See Box

251
2nd- Order Runge-Kutta Methods Textm

General Form:y, =y, + (a1k1 +a,k, )h @)
kl =f (Xi’ yi)
k, = (X + p.h, y; +a,.k.h)

By setting (2) equal to a T-S expansion through the 2" order
term, we can solve for a;,a,,p1,0;;

a+a,=1 a=1-a,
=172 | QRSO |, 1,
a,q, =1/2 Oy = 1/(23'2)

*Since there are an infinite number of choices for a, there will be
an infinite number of 2" order R-K Methods

2nd- Order Runge-Kutta Methods

A) Huen Method without iteration
(=%)a,=%,p=10q;=1

1 1
Yia =VYi ‘*’(Ekﬁ'akzjh
kl = f(xi! y|)
k, = f(x+h,y, +kh)

k, slope at start of interval a=1-a,
k, slope at end of interval
p=1/ (23.2 )

=1/(2a
Global Truncation Error ~ O(h?) Chs ( 2)

2nd- Order Runge-Kutta Methods

B) Midpoint Method (a,=1):a, =0, p,=1/2, g, =1/2

Yia =Y +kph
k= 0%, y)
k, = f (x, +0.5h, y, + 0.5k h)
a=1-a,
p, =1/(2a,)

=1/(2a
Global Truncation Error ~ O(h?) G ( 2)

12



2nd- Order Runge-Kutta Methods

C) Ralston’s Method (a, = 2/3 ): a, = 1/3, p, = 3/4, q,, =3/4
1 2
Yia = Vi +[§ k; ‘*'gszh

k= f(x, )

k, = T(x; +0.75h, y, +.75k;h)

a = 1- a,

P = 1/(28'2)
Oy, = 1/(2a2)

Global Truncation Error ~ O(h?)

4t - Order Runge-Kutta Methods

Classical 4t order RK Method — most commonly used RK
method

Yin=Yi +g(k1+2kz + 2k, +k4)h

Yia =Y +¢h k,
Slope Estimates:

k1 =f (Xi: Yi)

k, = T (% +0.5h, y; +.5k;h)

k, = f(x;, +0.5h,y, +.5k,h)

k, = f(x+h,y, +k;h)

Global Truncation Error ~ O(h?) X Xi+1/2 Xi+1

4th - Order Runge-Kutta Methods —

Example: Use classical RK4 to determine y @ x=0.4 for y’=x-y and
h=0.4
Recall the exact solution is:

RK4 Solution:

y=x+e -1
y(0.4) =0.070320

Xy =
Yo =
ki =f(x,¥)=%-Y=0

k, = f(x;+0.5h,y, +.5k;h) =(0+0.4/2)-(0+0)=0.2

0
0} Initial Conditions

k, = f (x +0.5h, y, +.5k,h) = (0+0.4/2) - (0+(0.5)(0.2)(0.4)) = 0.16

k, = f(x +0.5h,y, +k;h) = (0+0.4)— (0+0.16(0.4)) = 0.336

Y=Y, +%(k1+2k2 £ 2k, 4k, h= 0+%(0+ 2(2)+2(.16)+.336)0.4

y, =0.07040

13



4t - Order Runge-Kutta Methods —

Example: Use classical RK4 to determine y @ x=0.4 for y’=x-y and

h=0.4

Error: ‘.07032—.07040

.07032

‘olOO%:.ll%

t

See Matlab Sample Matlab RK4 method

Method Comparison

* Higher order methods produce better
accuracy

« Effort for the higher order methods is
similar to low-order methods (much of the
effort goes into evaluating the function)

» Classical 4" order RK is most widely used
as it produces accurate results with
reasonable effort.

Systems of Equations

e Recall, Any nt" order ODE can be represented as a system
of n 1t order ODEs

d
%= £,(X, Y1, Yaree )

d
%: £,(% Yar Yoo Vo)
d

dyx” = £.06 Y0 Yoo V)

* To solve the system requires n initial conditions at x = x,

14



Systems of Equations — RK4 Example

d
T)Q: fl(X, Y1vy2)
d
%: fz(X, Y1ryz)
For example:

d

9 (ay.a)-y

%: f,(x,y,2)=3-4cosz+y

Subject to initial conditions
Y10 = y1(x = 0) =Y,
Yoo = yz(x = 0): Y,

Systems of Equations — RK4 Example

Solve for slopes

k.

i

ith value of k for the jth dependant variable

For RK-4 i=1,2,3 and 4 while j=1, 2, ... number of
dependant variables

Systems of Equations — RK4 Example

Solve for slopes
Start with i=0 ko= (%0 a0 ¥al)
The initial condition Ky, = f,(X, Ys, ¥a)

kZ‘l

(
1 1 1
fl[xl *Eh: Yii +Ekuhvy2| *Ekuj

1 1 1
ol % +§h’ Yii JrEkuhvyzi *Ekuhj

fl(Xi '*'lhv Yii +lk21h, Yai '*'lkzzh)

k2‘2
k
o 2 2 2
k3,2

1 1 1
fz[x. +§h’ Vi +Ek21h’ Yai +Ekzth

Ky = £, + 1, Yy +Kgh, Y, + ko)
Kio = £(% + 1, Yy, + Kggh, Y + ko)

15



Systems of Equations — RK4 Example

1
Yiin =Y+ g(ku +2Ky, + 2ky + kzu)h

1
Y2 = Yai +g(k12 + 2kzz + 2k32 + k42 )h

Show Matlab Systems of Equations RK4 Example

dy _

dx ’ yl(X:O):4
Yo Yo 7y ¥i(x=0)=0
dx 2 !

Matlab ODE solvers

ODE23 and ODE45 are RK solvers that combine

2nd and 3" order RK and 4t and 5% order RK
methods.

See Chapter 8 in Palm Text.
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