

Lecture Objectives

- To understand the difference between an initial value and boundary value ODE
- To be able to understand when and how to apply the shooting method and FD method.
- To understand what an Eigenvalue Problem is.

Initial Value Problems

- These are the types of problems we have been solving with RK methods

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=f_{1}\left(t, y_{1}, y_{2}\right) \\
& \frac{d y_{2}}{d t}=f_{2}\left(t, y_{1}, y_{2}\right)
\end{aligned}
$$

Subject to:

$$
t=0
$$

$$
y_{1}(t=0)=Y_{1}
$$

$$
y_{2}(t=0)=Y_{2}
$$

\qquad

Initial Value Problems

- These are the types of problems we have been solving with RK methods

$$
\begin{array}{ll}
\frac{d y_{1}}{d t}=f_{1}\left(t, y_{1}, y_{2}\right) & \begin{array}{l}
\text { All conditions are specified } \\
\text { at the same value of the } \\
\text { independent variable! }
\end{array} \\
\frac{d y_{2}}{d t}=f_{2}\left(t, y_{1}, y_{2}\right) & \begin{array}{l}
\text { Subject to: } \\
t=0 \\
y_{1}(t=0)=Y_{1} \\
y_{2}(t=0)=Y_{2}
\end{array}
\end{array}
$$

\qquad

Boundary Value Problems

- Auxiliary conditions are specified at the boundaries (not just a one point like in
\qquad initial value problems)

Two Methods:
Shooting Method

Finite Difference Method

Boundary Value Problems

- Auxiliary conditions are specified at the boundaries (not just a one point like in
\qquad initial value problems)

Shooting Method

- Applicable to both linear \& non-linear Boundary Value (BV) problems.
- Easy to implement
- No guarantee of convergence
- Approach:
- Convert a BV problem into an initial value problem
- Solve the resulting problem iteratively (trial \& error)
\qquad
- Linear ODEs allow a quick linear interpolation
- Non-linear ODEs will require an iterative approach similar to our root finding techniques.

Shooting Method - Cooling fin Example	
	$\frac{d^{2} T}{d x^{2}}-\frac{h P}{k A}\left(T-T_{\infty}\right)=0$
1	$T(x=0)=T_{0}$
$h=$ heat transfer coefficient	$T(x=L)=T_{1}$
$P=$ perimeter of fin	Analytical Solution
$A=$ cross sectional area of fin $T_{\infty}=$ ambient temperature	$\begin{aligned} & m^{2}=\frac{h P}{k A} \\ & \theta(x)=T(x)-T_{\infty} \end{aligned}$
	$\frac{d^{2} \theta}{d x^{2}}-m^{2} \theta=0$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shooting Method - Cooling fin Example $\begin{gathered} \frac{d^{2} \theta}{d x^{2}}-m^{2} \theta=0 \\ \theta(x)=c_{1} e^{m x}+c_{2} e^{-m x} \end{gathered}$ $\begin{aligned} & \theta(x)=T(x)-T_{\infty} \\ & m^{2}=\frac{h P}{k A} \end{aligned}$ Boundary Conditions	

$$
\begin{aligned}
& \frac{d T}{d x}=z \\
& \frac{d z}{d x}=\frac{h P}{k A}\left(T-T_{\infty}\right)
\end{aligned}
$$

2. We need an initial value for z, Guess:

$$
\begin{aligned}
& T(x=0)=T_{0} \\
& z(x=0)=z_{1}
\end{aligned}
$$

Shooting Method - Cooling fin Example	
$T_{\infty} \quad$ Matlab implementation (rung4_fin_multieqn.m)	
习	Recast the problem:
$T_{0} \xrightarrow{\longrightarrow}{ }^{\text {a }}$	$T=y_{1}$
1	$d T$
$T_{\infty}=0$	$\frac{d x}{d x}=y_{2}$
$\mathrm{T}_{0}=200$	$\frac{d y_{1}}{d x}=y_{2}$
$T_{1}=100$	$\begin{aligned} & d x \\ & \frac{d y_{2}}{2}=m^{2}(v-T) \end{aligned}$
$m^{2}=\frac{h P}{1.1}=0.1$	$\frac{y_{2}}{d x}=m^{2}\left(y_{1}-T_{\infty}\right)$
$T(x)=23.62 e^{\sqrt{0.1 x}}+196.12 e^{-\sqrt{0.1 x}}$	$\begin{aligned} & y_{1}(x=0)=T_{0}=200 \\ & y_{2}(x=0)=G_{1} \end{aligned}$

Non-Linear BV Problems - Shooting Method

- Linear interpolation between 2 solutions will not necessarily result in a good estimate of the required boundary conditions
- Recast the problem as a Root finding problem
- The solution of a set of ODEs can be considered a function $g\left(z_{o}\right)$ where z_{o} is the initial condition that is unknown.

$$
g\left(z_{o}\right)=f\left(z_{o}\right)-y_{b c}
$$

- Drive $g\left(z_{o}\right) \rightarrow 0$ to get our solution.
- Iteratively adjust your guess.

Non-linear Shooting method - Secant Method

Consider the following ODEs system

$$
\begin{array}{ll}
\frac{d y}{d x}=z & y(a)=0 \\
\frac{d z}{d x}=f(x, y, z) & y(b)=y_{b}
\end{array}
$$

1. Guess an initial value of z (i.e., $z(a)$) just as was done with the linear method. Using RK4 or some other ODE method, we will obtain solution at y (b).
2. Denote the difference between the boundary condition and our result from the integration as some function m.

$$
\begin{array}{ll}
m(z)=g\left(y(b), y^{\prime}(b)\right) \longrightarrow & \begin{array}{l}
\text { Find the zero of this } \\
\text { function }
\end{array} \\
m=y_{\text {true }}(b)-y_{\text {guess }}(b)
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Non-linear Shooting method - Secant Method

3. Check to see if m is within an acceptable tolerance. Have we satisfied the boundary condition $y(b)$?

$$
\begin{gathered}
\varepsilon \leq \varepsilon_{s} \\
\varepsilon=\left|\frac{m_{i}-m_{i-1}}{m_{i}}\right|
\end{gathered}
$$

4. If not, then use the Secant Method to determine our next

$$
\begin{aligned}
& \text { guess. } \\
& \qquad z_{i}=z_{i-1}-\frac{m\left(z_{i-1}\right)}{m^{\prime}\left(z_{i-1}\right)} \\
& z_{i}=z_{i-1}-\frac{z_{i-1}-z_{i-2}}{m_{i-1}-m_{i-2}} m_{i-1}
\end{aligned}
$$

\qquad

Finite Difference Method

- Alternative to the shooting method
- Substitute finite difference equations for derivatives in the original ODE.
- This will give us a set of simultaneous algebraic equations that are solved a nodes.
- Recall using central differencing:

$$
\begin{gathered}
\frac{d T}{d x}=\frac{T_{i+1}-T_{i-1}}{2 \Delta x} \\
\frac{d^{2} T}{d x^{2}}=\frac{T_{i+1}-2 T_{i}+T_{i-1}}{\Delta x^{2}}
\end{gathered}
$$

Finite Difference Method

$$
\frac{d^{2} T}{d x^{2}}-m^{2}\left(T-T_{\infty}\right)=0
$$

Rewrite in finite (central) difference form: \qquad

$$
\frac{T_{i+1}-2 T_{i}+T_{i-1}}{\Delta x^{2}}-m^{2}\left(T_{i}-T_{\infty}\right)=0
$$

Multiply by Δx^{2} and solve for T_{i}

$$
T_{i+1}-2 T_{i}+T_{i-1}-m^{2}\left(T_{i}-T_{\infty}\right) \Delta x^{2}=0
$$

$$
-T_{i-1}+\left(2+m^{2} \Delta x^{2}\right) T_{i}-T_{i+1}=m^{2}\left(T_{\infty}\right) \Delta x^{2}
$$

$$
\begin{aligned}
& m^{2}=50 \\
& T_{1}=200 \\
& T_{6}=30 \\
& \Delta x=0.1
\end{aligned}
$$

Finite Difference Method

General Equation:

$$
-T_{i-1}+\left(2+m^{2} \Delta x^{2}\right) T_{i}-T_{i+1}=m^{2}\left(T_{\infty}\right) \Delta x^{2}
$$

Write out for all nodes:

$$
\begin{aligned}
& -T_{1}+\left(2+m^{2} \Delta x^{2}\right) T_{2}-T_{3}=m^{2}\left(T_{\infty}\right) \Delta x^{2} \\
& -T_{2}+\left(2+m^{2} \Delta x^{2}\right) T_{3}-T_{4}=m^{2}\left(T_{\infty}\right) \Delta x^{2} \\
& -T_{3}+\left(2+m^{2} \Delta x^{2}\right) T_{4}-T_{5}=m^{2}\left(T_{\infty}\right) \Delta x^{2} \\
& -T_{4}+\left(2+m^{2} \Delta x^{2}\right) \Gamma_{5}-T_{6}=m^{2}\left(T_{\infty}\right) \Delta x^{2}
\end{aligned}
$$

Apply boundary conditions:
$m^{2}=50 \quad-200+(2+0.5) T_{2}-T_{3}=12.5$
$T_{1}=200 \quad-T_{2}+(2+0.5) T_{3}-T_{4}=12.5 \quad 4$ Equations,
$T_{5}=30$
$\left.\begin{array}{l}-T_{3}+(2+0.5) T_{4}-T_{5}=12.5 \\ -T_{4}+(2+0.5) T_{5}-30=12.5\end{array}\right\}$ 4 unknowns
$\Delta x=0.1$

Finite Difference Method

Put in Matrix form:

$$
\left[\begin{array}{cccc}
2.5 & -1 & 0 & 0 \\
-1 & 2.5 & -1 & 0 \\
0 & -1 & 2.5 & -1 \\
0 & 0 & -1 & 2.5
\end{array}\right]\left\{\begin{array}{l}
T_{2} \\
T_{3} \\
T_{4} \\
T_{5}
\end{array}\right\}=\left\{\begin{array}{c}
212.5 \\
12.5 \\
12.5 \\
42.5
\end{array}\right\}
$$

Solve using one of our Systems of linear algebraic Equations methods

Fast, easy to implement technique for solving ODEs

Finite Difference Method - Extended to PDEs
Consider a simple Elliptical Equation: LaPlace’s Equation

$$
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=R(x, y)
$$

This could describe the steady state temperature distribution in 2D metal plate.

Discretize (write in finite difference form) our PDE using Central Difference technique:

$$
\frac{T_{i+1, j}-2 T_{i, j}+T_{i-1, j}}{\Delta x^{2}}+\frac{T_{i, j+1}-2 T_{j}+T_{j-1}}{\Delta y^{2}}=R_{i, j}
$$

\qquad

Finite Difference Method - Extended to PDEs
Consider a simple Elliptical Equation: LaPlace's Equation

$$
\frac{T_{i+1, j}-2 T_{i, j}+T_{i-1, j}}{\Delta x^{2}}+\frac{T_{i, j+1}-2 T_{j}+T_{j-1}}{\Delta y^{2}}=R_{i, j}
$$

$$
y_{\bullet}
$$

$$
\circ \quad{ }_{i, j+1} \text { • }
$$

$$
\times \quad{ }^{-1-1, j} \quad \text { i,j } \quad i+1, j{ }^{\circ}
$$

$$
\circ \quad \circ \quad{ }_{i, j-1} \quad \circ
$$

$$
\circ \circ \circ \circ \quad \longrightarrow x
$$

Finite Difference Method - Extended to PDEs
Solve for $T_{i, j}$
$T_{i+1, j}-2 T_{i, j}+T_{i-1, j}+\frac{\Delta x^{2}}{\Delta y^{2}} T_{i, j+1}-2 T_{i, j}+T_{j-1}=\Delta x^{2} R_{i, j}$
\qquad

If $\Delta x=\Delta y$, Uniform spacing

$$
T_{i+1, j}-4 T_{i, j}+T_{i-1, j}+T_{i, j+1}+T_{j-1}=\Delta x^{2} R_{i, j}
$$

If $R=0$

$$
T_{i, j}=\frac{T_{i+1, j}+T_{i-1, j}+T_{i, j+1}+T_{i, j-1}}{4}
$$

Finite Difference Method - Extended to PDEs
Suppose we have a heated plate with Dirchlet boundary conditions

We can easily use Gauss-Seidel to solve our system of equations until:

$$
\begin{gathered}
\varepsilon \leq \varepsilon_{s} \\
\varepsilon=\left|\frac{T_{i, j}^{\text {new }}-T_{i, j}^{\text {old }}}{T_{i, j}^{\text {new }}}\right|
\end{gathered}
$$

\qquad

