Boundary Value Problems

Ch. 27

Lecture Objectives

- To understand the difference between an initial value and boundary value ODE
- To be able to understand when and how to apply the shooting method and FD method.
- To understand what an Eigenvalue Problem is.

Initial Value Problems

• These are the types of problems we have been solving with RK methods

$$\frac{dy_1}{dt} = f_1(t, y_1, y_2)$$

$$\frac{dy_2}{dt} = f_2(t, y_1, y_2)$$

Subject to:

$$t = 0$$

$$y_1(t=0) = Y_1$$

$$y_2(t=0) = Y_2$$

Initial Value Problems

• These are the types of problems we have been solving with RK methods

$$\frac{dy_1}{dt} = f_1(t, y_1, y_2)$$
$$\frac{dy_2}{dt} = f_2(t, y_1, y_2)$$

All conditions are specified at the same value of the independent variable!

Subject to:

$$t = 0$$

$$y_1(t=0) = Y_1$$

$$y_2(t=0) = Y_2$$

Boundary Value Problems

• Auxiliary conditions are specified at the boundaries (not just a one point like in initial value problems)

Boundary Value Problems

 Auxiliary conditions are specified at the boundaries (not just a one point like in initial value problems)

conditions are specified at different values of the independent variable!

Two Methods: Shooting Method Finite Difference Method

Shooting Method

- Applicable to both linear & non-linear Boundary Value (BV) problems.
- · Easy to implement
- No guarantee of convergence
- Approach:
 - Convert a BV problem into an initial value problem
 - Solve the resulting problem iteratively (trial & error)
 - Linear ODEs allow a quick linear interpolation
 - Non-linear ODEs will require an iterative approach similar to our root finding techniques.

Shooting Method – Cooling fin Example

h = heat transfer coefficient

k =thermal conductivity

P =perimeter of fin

A =cross sectional area of fin

 T_{∞} = ambient temperature

$$\frac{d^2T}{dx^2} - \frac{hP}{kA} (T - T_{\infty}) = 0$$

$$T(x=0) = T_0$$

$$T(x=L)=T_1$$

Analytical Solution

$$m^2 = \frac{hP}{hA}$$

$$\theta(x) = T(x) - T_{\infty}$$

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$

Shooting Method – Cooling fin Example

 $\frac{d^2\theta}{dx^2} - m^2\theta = 0$

$$\theta(x) = c_1 e^{mx} + c_2 e^{-n}$$

 $\theta(x) = T(x) - T_{\infty}$

Boundary Conditions

$$m^2 = \frac{hP}{}$$

 $T(x=0) = T_0$ $\theta(x=0) = T_0 - T_\infty = \theta_0$ $T(x=L) = T_1$ $\theta(x=L) = T_1 - T_\infty = \theta_1$

$$\theta(x=0) = c_1 + c_2 = \theta_0$$

$$\theta(x=L) = c_1 e^{mL} + c_2 e^{-mL} = \theta_1$$

 $\frac{\theta(x)}{\theta_0} = \frac{\left(\theta_1 / \theta_0\right) \sinh mx + \sinh m(L - x)}{\sinh mL}$

 $Shooting\ Method-Basic\ Method-Cooling\ fin\ Example$

$$\frac{d^2T}{dx^2} - \frac{hP}{kA}(T - T_{\infty}) = 0$$
$$T(x = 0) = T_0$$

1. Rewrite as two first order ODEs

$$\frac{dT}{dx} = z$$

$$\frac{dz}{dx} = \frac{hP}{kA} \left(T - T_{\infty} \right)$$

2. We need an initial value for z, Guess:

$$T(x=0) = T_0$$

$$z(x=0)=z_1$$

Shooting Method - Basic Method - Cooling fin Example

3. Integrate the two equations using RK4 and z_l ; this will yield a solution at x = l

4.Integrate the two equations again using a 2nd guess guess for $z(x=0)=z_2$.

5. Linearly interpolate the z results to obtain the correct initial condition (Note: this only works for Linear ODEs.

Example:

$$z_{act} = z_2 + \frac{z_1 - z_2}{T_1 - T_2} (T_{act} - T_2)$$

T(x) z_I Exact

Shooting Method – Cooling fin Example

 $Matlab\ implementation\ (rung4_fin_multieqn.m\)$

 $T_{\infty}=0$

 $T_0 = 200$

 $m^2 = \frac{hP}{kA} = 0.1$

Recast the problem: $T = y_1$

 $T(x) = 23.62e^{\sqrt{0.1}x} + 196.12e^{-\sqrt{0.1}x}$

 $y_1(x=0) = T_0 = 200$ $y_2(x=0)=G_1$

Non-Linear BV Problems - Shooting Method

- Linear interpolation between 2 solutions will not necessarily result in a good estimate of the required boundary conditions
- Recast the problem as a Root finding problem
- The solution of a set of ODEs can be considered a function $g(z_o)$ where z_o is the initial condition that is unknown.

$$g(z_o) = f(z_o) - y_{bc}$$

- Drive $g(z_o) \rightarrow 0$ to get our solution.
- Iteratively adjust your guess.

Non-linear Shooting method - Secant Method

Consider the following ODEs system

$$\frac{dy}{dx} = z$$

$$\frac{dz}{dx} = f(x, y, z)$$

$$y(a) = 0$$

- 1. Guess an initial value of z (i.e., z(a)) just as was done with the linear method. Using RK4 or some other ODE method, we will obtain solution at y(b).
- 2. Denote the difference between the boundary condition and our result from the integration as some function m.

$$m(z) = g(y(b), y'(b))$$
 Find the zero of this function

function

$$m = y_{true}(b) - y_{guess}(b)$$

Non-linear Shooting method – Secant Method

3. Check to see if m is within an acceptable tolerance. Have we satisfied the boundary condition y(b)?

$$\varepsilon \leq \varepsilon$$

$$\varepsilon = \frac{m_i - m_{i-1}}{m}$$

4. If not, then use the Secant Method to determine our next

$$z_i = z_{i-1} - \frac{m(z_{i-1})}{m'(z_{i-1})}$$

Non-linear Shooting method – Secant Method

$$y(a) = 0$$

$$y(b) = y_b$$

$$\downarrow z(a) = Guess$$

$$y(a) = 0$$

$$\downarrow Solve with RK4$$

$$y(x)$$

$$z(x)$$

$$y(b)$$

$$m = y_{true}(b) - y_{guess}(b)$$
 Is m small enough?
$$\downarrow Yes$$

Finite Difference Method

- Alternative to the shooting method
- Substitute finite difference equations for derivatives in the original ODE.

write out solution

- This will give us a set of simultaneous algebraic equations that are solved a *nodes*.
- Recall using central differencing:

$$\frac{dT}{dx} = \frac{T_{i+1} - T_{i-1}}{2\Delta x}$$

$$\frac{d^2T}{dx^2} = \frac{T_{i+1} - 2T_i + T_{i-1}}{\Delta x^2}$$

Finite Difference Method

$$\frac{d^2T}{dx^2} - m^2 \left(T - T_{\infty}\right) = 0$$

Rewrite in finite (central) difference form:

$$\frac{T_{i+1} - 2T_i + T_{i-1}}{\Delta x^2} - m^2 (T_i - T_{\infty}) = 0$$

Multiply by Δx^2 and solve for T_i

$$T_{i+1} - 2T_i + T_{i-1} - m^2 (T_i - T_{\infty}) \Delta x^2 = 0$$

- $T_{i-1} + (2 + m^2 \Delta x^2) T_i - T_{i+1} = m^2 (T_{\infty}) \Delta x^2$

 $m^2 = 50$ $T_1 = 200$ $T_6 = 30$ $\Delta x = 0.1$

Finite Difference Method

General Equation:
$$-T_{i-1} + \left(2 + m^2 \Delta x^2\right) T_i - T_{i+1} = m^2 \left(T_{\infty}\right) \Delta x^2$$

Write out for all nodes:

of an inecess.
$$-T_1 + (2 + m^2 \Delta x^2) T_2 - T_3 = m^2 (T_{\infty}) \Delta x^2$$

$$-T_2 + (2 + m^2 \Delta x^2) T_3 - T_4 = m^2 (T_{\infty}) \Delta x^2$$

$$-T_3 + (2 + m^2 \Delta x^2) T_4 - T_5 = m^2 (T_{\infty}) \Delta x^2$$

$$-T_4 + (2 + m^2 \Delta x^2) T_5 - T_6 = m^2 (T_{\infty}) \Delta x^2$$

Apply boundary conditions:

Finite Difference Method

Put in Matrix form:

$$\begin{bmatrix} 2.5 & -1 & 0 & 0 \\ -1 & 2.5 & -1 & 0 \\ 0 & -1 & 2.5 & -1 \\ 0 & 0 & -1 & 2.5 \end{bmatrix} \begin{bmatrix} T_2 \\ T_3 \\ T_4 \\ T_5 \end{bmatrix} = \begin{bmatrix} 212.5 \\ 12.5 \\ 42.5 \end{bmatrix}$$

Solve using one of our Systems of linear algebraic Equations methods

Fast, easy to implement technique for solving ODEs

Finite Difference Method – Extended to PDEs

Consider a simple Elliptical Equation: LaPlace's Equation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = R(x, y)$$

This could describe the steady state temperature distribution in 2D metal plate.

Discretize (write in finite difference form) our PDE using Central Difference technique:

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{\Delta x^2} + \frac{T_{i,j+1} - 2T_j + T_{j-1}}{\Delta y^2} = R_{i,j}$$

Finite Difference Method – Extended to PDEs

Consider a simple Elliptical Equation: LaPlace's Equation

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{\Delta x^2} + \frac{T_{i,j+1} - 2T_j + T_{j-1}}{\Delta y^2} = R_{i,j}$$

Finite Difference Method – Extended to PDEs

Solve for $T_{i,j}$

$$T_{i+1,j} - 2T_{i,j} + T_{i-1,j} + \frac{\Delta x^2}{\Delta y^2} T_{i,j+1} - 2T_{i,j} + T_{j-1} = \Delta x^2 R_{i,j}$$

If $\Delta x = \Delta y$, Uniform spacing

$$T_{i+1,j} - 4T_{i,j} + T_{i-1,j} + T_{i,j+1} + T_{j-1} = \Delta x^2 R_{i,j}$$

If R = 0

$$T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}$$

Finite Difference Method – Extended to PDEs

Suppose we have a heated plate with *Dirchlet boundary conditions*

$$T = 100$$

$$T = 40$$

T = 80

$$T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}$$

We can easily use Gauss-Seidel to solve our system of equations until:

$$\varepsilon \leq \varepsilon_{s}$$

$$\varepsilon = \frac{T_{i,j}^{new} - T_{i,j}^{old}}{T_{i,j}^{new}}$$

Finite Difference Method – Extended to PDEs	
Heated Plate Matlab Example	