|                                                                                                              | _ |
|--------------------------------------------------------------------------------------------------------------|---|
|                                                                                                              |   |
|                                                                                                              |   |
| Introduction to Numerical Methods                                                                            |   |
| ME 2450                                                                                                      |   |
| Spring 2006                                                                                                  |   |
|                                                                                                              |   |
|                                                                                                              |   |
|                                                                                                              |   |
|                                                                                                              |   |
|                                                                                                              | 1 |
| Lecture Objectives                                                                                           |   |
|                                                                                                              |   |
| <ul> <li>To understand what Numerical Methods are<br/>and why we (as Engineers) are interested in</li> </ul> |   |
| them                                                                                                         |   |
| <ul> <li>To understand the basic concepts of mathematical modeling</li> </ul>                                |   |
| maticinatical modernig                                                                                       |   |
|                                                                                                              |   |
|                                                                                                              |   |
|                                                                                                              |   |
|                                                                                                              |   |
| Numerical Methods                                                                                            |   |
| Numerical Methods are mathematically                                                                         |   |
| based techniques ( <i>Tools</i> ) that utilize computers to allow us to solve Engineering                    |   |
| Problems that are not easily solved or even impossible to solve by analytical means.                         |   |
| Usually involve large numbers of tedious                                                                     |   |
| arithmetic operations.                                                                                       |   |
|                                                                                                              |   |

# Chapter 1 – Mathematical Modeling

### 1. Modeling the Physics

Mathematical Model: Equation or formulation that expresses the essential features of a physical system or process in mathematical terms (*Governing Equations*)

### 2. Numerical Method Selection

- a. Accuracy
- b. Implementation time
- c. Stability
- d. Ease of implementation
- 3. Program/debug
- 4. Interpret Results

 $Dependent\ Variable = f\ (indep.\ variables,\ system\ parameters, forcing\ functions)$ 

## 

### Mathematical Modeling

 $Dependent\ Variable = f\ (indep.\ variables,\ system\ parameters,\ forcing\ functions)$ 

Reflective of system properties (spring constant)

Simple Example: Mass-Spring-Damper System

$$m\ddot{x} + c\dot{x} + kx = F(t)$$

$$x = f(t, m, c, k, F)$$



## Mathematical Modeling

Other Examples:

- Navier-Stokes Equation in Fluid Mechanics
- Euler's Equations of Motion
- Energy Equation
- · Conservation of Mass
- Many others

#### Mathematical Modeling

Simple Example: Newton's 2<sup>nd</sup> Law

$$\vec{F} = m\vec{a}$$

Rearrange:

$$\vec{a} = \frac{\vec{F}}{m}$$

## Mathematical Modeling

Simple Example: Newton's 2<sup>nd</sup> Law

Dependent variable 
$$\vec{a} = \frac{\vec{F}}{m}$$
 System parameter

Why Does this equation represent a typical mathematical model?

#### Mathematical Modeling

Simple Example: Newton's 2<sup>nd</sup> Law

Dependent variable 
$$\vec{a} = \frac{\vec{F}}{m}$$
 Forcing Function System parameter

Why Does this equation represent a typical mathematical model?

- 1. Describes Natural process in mathematical terms
- 2. It is a simplification or idealization of the real world process
- 3. Yields reproducible results that can be used for predictive purposes

#### Mathematical Modeling

More Complicated Example: Newton's 2<sup>nd</sup> Law

$$a = \frac{\sum F_{y}}{m} = \frac{F_{d} + F_{W}}{m} - \frac{F_{d} - cv}{F_{w}} = mg$$



$$F_w = mg$$



## Mathematical Modeling

More Complicated Example: Newton's  $2^{\rm nd}$  Law

$$a = \frac{\sum F_{y}}{m} = \frac{F_{d} + F_{W}}{m}$$



$$a = \frac{mg - cv}{m}$$

$$\frac{dv}{dt} = g - \frac{c}{m}v \longrightarrow \text{Solve Analytically}$$

| 5 |  |
|---|--|
| J |  |