Structured Programming & an Introduction to Error

Lecture Objectives

• Review the basic good habits of programming

• To understand basic concepts of error and error estimation as it applies to Numerical Methods

Structured Programming – Ch.2
Set of rules that prescribe good habits for a programmer

• Numerical Algorithms are typically composed of 3 types of control structures:
 1. Sequence
 2. Selection
 3. Repetition

• Tools used to develop algorithms and visualize before actually writing code
 – Flowcharts – graphical method
 – Pseudocode – simplified computer code statements
Basic Flow Chart Features

- Start
- End
- Process
- Decision
- IO

Sequence

Instruction1
 Instruction2
 Instruction3
 Instruction4

(a) Flowchart (b) Pseudocode

Selection

Flowchart Pseudocode

(a) Single alternative structure (IF/THEN/ELSE)

(b) Double alternative structure (IF/THEN/ELSE)
Modular Programming

- Breaking up tasks into digestible parts
- The parts should be as independent & self-contained as possible (*Reusable Chunks*)
 - In C/FORTRAN – judicious use of subroutines
 - Matlab – scripts and function
 - Numerical Recipes
Error & Error Estimation
If we have an analytic solution we can get an exact error, if not we must estimate the error associated with our numerical method.

Significant Figures – Confidence in using a number

#Sig digits = Certain digits + 1 Estimated digit

Zeros – When are they significant? (Depends on where they are)

- Preceding zeros:
 - 0.00378 3 Significant Digits
 - 0.0004016 4 Significant Digits

- Following zeros: We use scientific notation
 - 56,000 56.0 \times 10^3 3 Significant Digits

Accuracy & Precision (characterizes error associated with both calculations and measurements)

- Accuracy: How close is the computed or measured value to the truth?
- Valid: supported by objective truth.
- Precision: How closely do the individually computed or measured values agree with one another?
- Reliable: Produces the same result on successive trials.

* Numerical Methods should be accurate & precise enough to meet the needs of the engineering design problem.
Errors in Numerical Methods

1. **Truncation Errors** - Results from an approximation of an exact mathematical procedure.

 Example: Only using a finite number of terms in an infinite series expansion - Binomial Expansion

 \[(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots + \frac{n(n-1)...(n-k+1)}{k!}x^k + \ldots \]

 \[|x| < 1\]

2. **Round-Off Errors** - Results from having numbers with limited significant figures represent exact numbers.

For Both Types of Errors:

True Value = Approximation + Error

Error Definitions

True Error = True Value – Approximation

\[E_t = T - A\]

Normalized True Error – Relative Error (\(\varepsilon_t\))

\[\varepsilon_t = \frac{E_t}{T} \times 100\% \quad \text{True Percent Error}\]

Approximate Error – \((E_a)\) We need to approximate the error when we do not have the “true” value available.

Approximate Relative Error (\(\varepsilon_a\))

\[\varepsilon_a = \frac{E_a}{A} \times 100\%\]

How do we find \(E_a\)?

Example: Iterative Approach:

\[\varepsilon_a = \frac{A_i - A_{i-1}}{A} \times 100\%\]

Magnitude of Error

Generally, we will compute until the absolute value of the relative error reaches some specified value,

\[|\varepsilon_t| < \varepsilon_t\]

How do we determine \(\varepsilon_t\)? To obtain a result that is accurate to at least \(N\) significant figures, we can use the following formula:

\[\varepsilon_t = (0.5 \times 10^{-N})\]
Round Off Errors

Computers retain only a fixed number of significant figures during a calculation

\[\Pi = 3.14159265... \]
\[e = 2.7183... \]
Computers use base-2 representation & can not precisely represent all base-10 numbers

- **Word** – “fundamental unit of information storage”
 - Consist on binary digits or bits
 - Numbers are stored in 1 or more words
- **Base 10 system** – 0,1,2,3,4,5,6,7,8,9
 - Example 123,431
 \[(1\times10^5)+(2\times10^4)+(3\times10^3)+(4\times10^2)+(3\times10^1)+(1\times10^0) \]
- **Binary/base 2 system** – 0,1
 - Example 1101
 \[-(1\times2^3)+(1\times2^2)+(0\times2^1)+(1\times2^0) = 13 \]

Integer Representation

Signed binary numbers or **signed magnitude method**:

- \(S = 1 \) if negative
- \(S = 0 \) if positive

\[
\begin{array}{cccccccccccccccc}
S & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\end{array}
\]

Range of integers for 16-bit example:

\(2^{15} - 1 \) to \(-2^{15} \)

Integer Representation – 5 bit example

\[
\begin{array}{cccccc}
\vdots & 1 & 0 & 0 & 1 & \\
4 & 3 & 2 & 1 & 0 \\
\end{array}
\]

\[
= - \left[(1\times2^3) + (0\times2^2) + (0\times2^1) + (1\times2^0) \right] \\
= -9
\]
Real or Floating-Point Representation:
Contains a Fractional and Integer part

\[N = m \cdot b^e \]

- Mantissa
- Fractional part
- Exponent
- Base of number system (10)
- Sign of number
- Exponent
- Mantissa

Floating-Point Representation Example

\[\frac{1}{27} = 0.037037037... \]

Using 4 digits could be stored as:

\[0.0370 \times 10^0 \]

Normalize

\[0.3703 \times 10^{-1} \]

Normalizing limits the range of mantissa to:

\[\frac{1}{b} \leq m < 1 \]

Floating-Point

- Allows us to handle very large and small numbers

but …

DISADVANTAGES:
1. More storage is required than for integers
2. Longer processing time
3. Round-off error is introduced since the mantissa holds a finite number of digits.
Round-Off Error Characteristics

1. Limit to the size (Large & Small) that can be Represented
 \((10^{-38} < x < 10^{38})\)
2. There are finite number of quantities that can be represented
 within a range. As a result:
 - Precision is limited
 - Irrational Numbers are not exact
 - Rational #'s may not be represented by one of the
 possible values in the set available on the computer

Quantized Errors – The result of chopping or Rounding
Ex: \(\Pi = 3.14159265\ldots\) If we only have 8 digits:
 3.1415926 Chopping
 3.1415927 Rounding
 Reduces error

Round-Off Error Characteristics

3. Interval between numbers (\(\Delta x\)) increases as \(x\) increases.
 Example: 4 digit mantissa
 \(0.4356 \times 10^4 \rightarrow \Delta x = 1\)
 \(0.4356 \times 10^5 \rightarrow \Delta x = 0.0001\)
 For Chopping:
 \[
 \frac{\Delta x}{x} \leq \epsilon_m
 \]
 \(\epsilon_m\) is the “machine epsilon” – sets the bounds for the relative
 Quantized error.
 \(\epsilon_m = b^{1-s}\)
 Sig digits in mantissa
 Number base
 When & why would we be
 Interested in \(\epsilon_m\)?

Extended Precision

Single Precision – For most engineering application o.k.
Typically, 7 significant base-10 digits for 24 bit mantissa
\(\rightarrow\) Range \(10^{-38}\) to \(10^{-38}\)

Double Precision - 15 to 16 base-10 digits \(\rightarrow\) Range \(10^{-308}\) to
\(10^{-308}\)
- Round-Off Error is mitigated
- Computational time increases
Arithmetic Manipulation Errors
- Simple operation \(\rightarrow \) R.O. Error
- Consider computer w/ 4 digit mantissa

1. **Addition**: Add 2.345 & 0.0123

\[
\begin{align*}
2.345 \times 10^1 & \quad + \quad 0.1234 \times 10^{-1} \\
0.001234 \times 10^1 & \quad + \quad 0.235734 \times 10^1 \\
\end{align*}
\]

- Modify smaller exponent to match larger
- Chop
- Last 2 digits have been lost!
- \(\varepsilon = \frac{2.35734 - 2.357}{2.35734} \times 100\% = 0.014\% \)

\(0.2357 \times 10^1 \)

2. **Subtraction**: What if we have 2 nearly equal numbers?

Subtract 12.33 from 12.34

\[
\begin{align*}
0.1234 \times 10^2 & \quad - \quad 0.1233 \times 10^2 \\
0.0001 \times 10^2 & \quad 0.1000 \times 10^{-1} \\
\end{align*}
\]

- Normalize
- 3 non-significant zeros added!

Subtractive cancellation: One of the most troublesome Round off errors.

3. **Multiplication**: Exponents are added & Mantissas multiplied

\[
(0.1524 \times 10^2) \ (0.5924 \times 10^2) = 0.09028176 \times 10^4
\]

- Normalize
- \(0.9028176 \times 10^3 \)
- Chop
- \(0.9028 \times 10^3 \)

4. **Division**: Mantissas are divided and exponents subtracted.
Arithmetic Manipulation Errors

5. Large Numbers of Computations: Cumulative effect of many small round-off errors.
 See Example 3.6 in Text for a FORTRAN Example:
 • Matlab uses double precision for all calculations

6. Adding Large and Small Numbers:

\[
\begin{align*}
20000 & \quad + \quad 0.1 \\
\text{Normalize} & \quad 0.20000 \times 10^5 \\
\text{Chop} & \quad 0.20000 \times 10^5 \\
\text{Chop} & \quad 0.200001 + 0.000001 = 0.200001 \times 10^5
\end{align*}
\]

0.1 term is entirely lost!

7. Smearing – Summation of Series
 • Occurs whenever individual terms of a series are larger than the total summation

\[
e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \ldots
\]

\(x > 0\) No problem
\(x < 0\) sign switching can occur