

Lecture Objectives

- To understand the basic utility of the Taylor series in numerical methods
- To understand the Derivative Mean Value Theorem and it's application to error analysis
- To understand the Propagation of Error

Truncation Errors \& Taylor Series

Taylor Series - provides a way to predict a value of a function at one point in terms of the function value and derivatives at another point.

* Any smooth function can be approximated by a polynomial

1. "Zeroth-Order" Approximation
$f\left(x_{i+1}\right)=f\left(x_{i}\right)$

- Close if h is small
- Exact if $f(x)=$ constant

\qquad

\qquad
\qquad
\qquad
\qquad

Truncation Errors \& Taylor Series

\qquad
3. $2^{\text {nd }}-$ Order Approximation

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)+\frac{f^{\prime \prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)^{2}}{2!}
$$

4. In general, if $h=\left(x_{i+1}-x_{i}\right)$
$f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}+\frac{f^{n}\left(x_{i}\right) h^{n}}{n!}+R_{n}$

Example - $3^{\text {rd }}$ Order Polynomial

$f(x)=x^{3}-3 x^{2}+4 x+1$
Estimate $f\left(x_{i+1}=1\right)$ using information at $f\left(x_{i}=0\right)$,

* Use h=1 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Example $-3^{\text {rd }}$ Order Polynomial
$f(x)=x^{3}-3 x^{2}+4 x+1$
Estimate $f\left(x_{i+1}=1\right)$ using information at $f\left(x_{i}=0\right)$.
*Use h=1
Exact: $f(1)=1-3+4+1=3$
Approximate: $\quad f^{\prime}(x)=3 x^{2}-6 x+4$
$f^{\prime \prime}(x)=6 x-6$
$f^{\prime \prime \prime}(x)=6$
$f^{i v}(x)=0$
$f(1)=f(0)+f^{\prime}(0) h+\frac{f^{\prime \prime}(0) h^{2}}{2!}+\frac{f^{\prime \prime \prime}(0) h^{3}}{3!}$
$f(1)=1+4(1)+\frac{(-6) 1^{2}}{2}+\frac{(6) 1^{3}}{6}=1+4-3+1=3$

Truncation Error

In General, we do not have an infinite number of terms.
Hence, our remainder term $R_{n}>0$

$$
R_{n}=\frac{f^{n+1}(\xi) h^{n+1}}{(n+1)!}
$$

"Error Order" is expressed as $R_{n}=O\left(h^{n+1}\right)$

- Truncation error is of order h to the n + Truncation Error is proportional to h to ${ }^{n+1}$
Allows comparison of truncation errors
For example, let's approximate $f(x)$ with $p(x)$
$p(x)=f(a)+f^{\prime}(a) h+\frac{f^{\prime \prime}(a) h^{2}}{2!}+\frac{f^{\prime \prime \prime}(a) h^{3}}{3!}+R_{3}$
$R_{3}=O\left(h^{4}\right)$
Is read as, the error incurred using the
third order Taylor series expansion
$p(x)$ to apprximate $f(x)$ is of order
h to the $4^{\text {th }}$.

Truncation Error	
What does this mean?	
$R_{n}=O(h)$	
$R_{n}=O\left(h^{2}\right)$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad derivative are continuous over $x_{i}<x<x_{i+1}$ then there exists at least one point on the function that has a slope (I.e. derivative) parallel to the line connecting $f\left(x_{i}\right)$ and $f\left(x_{i+1}\right)$

Understanding ξ Derivative Mean Value Theorem

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { Taylor Series \& Truncation Estimates } \\
& \text { (Finite Difference Approximations) } \\
& \text { 1. Forward Finite Difference Method }-1^{\text {st }} \text { derivative } \\
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}+\frac{f^{n}\left(x_{i}\right) h^{n}}{n!}+R_{n} \\
& \text { Solve for } f^{\prime}(x) \\
& \text { The truncation error may be written: } \\
& \qquad \frac{R_{1}}{h}=\frac{f^{\prime}\left(x_{i}\right)(\xi) h^{2}}{2!h}=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h}+\frac{R_{1}}{h}(\xi) h \\
& 2!
\end{aligned} O(h) \quad .
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Taylor Series \& Truncation Estimates (Finite Difference Approximations)

\qquad
2. Backward Finite Difference Method $-1^{\text {st }}$ derivative: Subtract Backward expansion from Forward exp
\qquad

$$
f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}-\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}+\ldots
$$

Solve for $f^{\prime}(x)$

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{h}+O(h)
$$

Taylor Series \& Truncation Estimates

 (Finite Difference Approximations)3. Central Finite Difference Method $-1^{\text {st }}$ derivative
$f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime}\left(x_{i}\right) h^{2}}{2!}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}$.
$-\left[f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}-\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}+\ldots\right]$
$f\left(x_{i+1}\right)-f\left(x_{i-1}\right)=2 f^{\prime}\left(x_{i}\right) h+\frac{2 f^{\prime} '\left(x_{i}\right) h^{3}}{3!}+\ldots$
Solve for $f^{\prime}(x)$

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h}+O\left(h^{2}\right)
$$

Finite Difference Approximations - Higher

 Order derivatives4. Forward Finite Difference Method - $2^{\text {nd }}$ derivative
$f\left(x_{i+2}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) 2 h+\frac{f^{\prime \prime}\left(x_{i}\right) 4 h^{2}}{2!}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) 8 h^{3}}{3!}+\ldots$ $-\left[2 f\left(x_{i+1}\right)=2 f\left(x_{i}\right)+2 f^{\prime}\left(x_{i}\right) h+\frac{2 f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}+\frac{2 f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{3!}+\ldots\right]$

$$
f\left(x_{i+2}\right)-2 f\left(x_{i+1}\right)=-f\left(x_{i}\right)-\frac{2 f^{\prime \prime}\left(x_{i}\right) h^{2}}{2!}+\ldots
$$

Solve for $f^{\prime}(x)$

$$
f^{\prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i+2}\right)-2 f\left(x_{i+1}\right)+f\left(x_{i}\right)}{h^{2}}+O(h)
$$

Finite Difference Approximations - Higher

 Order derivatives5. Backward Finite Difference Method $-2^{\text {nd }}$ derivative

$$
f^{\prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i-2}\right)-2 f\left(x_{i-1}\right)+f\left(x_{i}\right)}{h^{2}}+O(h)
$$

5. Central Finite Difference Method $-2^{\text {nd }}$ derivative

$$
f^{\prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-2 f(x)+f\left(x_{i-1}\right)}{h^{2}}+O\left(h^{2}\right)
$$

Error Propagation- How do errors in individual variables propagate through calculations?
 Consider a true value X and an approximate value \tilde{X} (for a 4 digit computer):
 $x=0.123456 \times 10^{1}$
 $$
\tilde{x}=0.1234 \times 10^{1}
$$

How much error is introduced in $f(x)$ by \tilde{x} approximation?

$$
\Delta f(\tilde{x})=|f(x)-f(\tilde{x})|
$$

Difficult to estimate since x is unknown
We can write a TS expansion for $\mathrm{f}(\mathrm{x})$ about \tilde{X} $f(x)=f(\tilde{x})+f^{\prime}(\tilde{x})(x-\tilde{x})+\frac{f^{\prime \prime}(\tilde{x})(x-\widetilde{x})^{2}}{2!}+\ldots$
Truncate at $1^{\text {st }}$ derivative:

$$
\begin{aligned}
& \qquad \Delta f(\tilde{x})=|f(x)-f(\tilde{x})|=\left|f^{\prime}(\tilde{x})\right||x-\tilde{x}|=\left|f^{\prime}(\tilde{x})\right| \Delta \tilde{x} \\
& \text { Estimate of } \\
& \text { Error in } f
\end{aligned}
$$

Graphical Interpretation of Error Estimate

Example: Given $\quad f(x)=e^{-2 x}+3 x$
Estimate the error $\Delta f(\tilde{x})$ for $\tilde{x}=1$ with $\Delta \tilde{x}=0.01$

Error Propagation- Functions of more than one variable

Apply Taylor Series to functions of multiple variables, I.e., $f(x, y, z)$
$f\left(x_{i+1}, y_{i+1}, z_{i+1}\right)=f\left(x_{i}, y_{i}, z_{i}\right)+\left.\frac{\partial f}{\partial x}\right|_{i}\left(x_{i+1}-x_{i}\right)+\left.\frac{\partial f}{\partial y}\right|_{i}\left(y_{i+1}-y_{i}\right)+\left.\frac{\partial f}{\partial z}\right|_{i}\left(z_{i+1}-z_{i}\right)+$ H.O.T.
Neglecting $2^{\text {nd }}$ order and higher terms, the error in f is:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Graphical Interpretation of Error Estimate
\qquad

\qquad
\qquad
\qquad
\qquad

Error Propagation- Functions of more than one variable

Apply Taylor Series to functions of multiple variables, I.e., $f(x, y, z)$

$$
f\left(x_{i+1}, y_{i+1}, z_{i+1}\right)=f\left(x_{i}, y_{i}, z_{i}\right)+\left.\frac{\partial f}{\partial x}\right|_{i}\left(x_{i+1}-x_{i}\right)+\left.\frac{\partial f}{\partial y}\right|_{i}\left(y_{i+1}-y_{i}\right)+\left.\frac{\partial f}{\partial z}\right|_{i}\left(z_{i+1}-z_{i}\right)+\text { H.O.T. }
$$

Neglecting $2^{\text {nd }}$ order and higher terms, the error in f is:

$$
\Delta f(\tilde{x}, \tilde{y}, \tilde{z})=\left|\frac{\partial f}{\partial x}\right| \Delta \tilde{x}+\left|\frac{\partial f}{\partial y}\right| \Delta \tilde{y}+\left|\frac{\partial f}{\partial z}\right| \Delta \tilde{z}
$$

Where $\Delta \tilde{x} \Delta \tilde{y} \Delta \tilde{z}$ are estimates of the error in x, y and z
In general, $1^{\text {st }}$ order approximation of the error in f is:

$$
\Delta f\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}, \ldots, \tilde{x}_{n}\right)=\left|\frac{\partial f}{\partial x_{1}}\right| \Delta \tilde{x}_{1}+\left|\frac{\partial f}{\partial x_{2}}\right| \Delta \tilde{x}_{2}+\left|\frac{\partial f}{\partial x_{3}}\right| \Delta \tilde{x}_{3}+\ldots+\left|\frac{\partial f}{\partial x_{n}}\right| \Delta \tilde{x}_{n}
$$

Error Propagation- Reynolds Number Example $\operatorname{Re}=\frac{U D}{v} \quad \begin{array}{ll} \text { Where: } \begin{array}{ll} \mathrm{V} & =\text { average fluid velocity }(\mathrm{m} / \mathrm{s}) \\ \mathrm{D}=\text { pipe diameter }(\mathrm{m}) \\ \mathrm{v} & =\text { kinematic viscosity }\left(\mathrm{m}^{2} / \mathrm{s}\right) \text { water } \end{array} \end{array}$ Estimate the error in Re for the Given data: $\tilde{U}=0.5 \quad \Delta \tilde{U}=0.01 \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & \tilde{D}=0.1 \\ & \tilde{v}=1.0 \times 10^{6} \end{aligned} \begin{aligned} & \Delta \tilde{D}=0.001 \mathrm{~m} \\ & \Delta \tilde{v}=0.005 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \end{aligned} \quad \operatorname{Re}=\frac{U D}{V}=\frac{(.5)(.1)}{1 \times 10^{-6}}=50,000$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Error Propagation- Reynolds Number Example

$$
\operatorname{Re}=\frac{U D}{v} \quad \begin{aligned}
& \text { Where: } \begin{array}{l}
\mathrm{V}=\text { average fluid velocity }(\mathrm{m} / \mathrm{s}) \\
\mathrm{D}=\text { pipe diameter }(\mathrm{m}) \\
v=\text { kinematic viscosity }\left(\mathrm{m}^{2} / \mathrm{s}\right) \text { water }
\end{array}
\end{aligned}
$$

Estimate the error in Re for the Given data:
$\tilde{U}=0.5 \quad \Delta \tilde{U}=0.01 \mathrm{~m} / \mathrm{s}$
$\tilde{D}=0.1 \quad \Delta \tilde{D}=0.001 \mathrm{~m}$
$\tilde{v}=1.0 \times 10^{-6}$
$\operatorname{Re}=\frac{U D}{v}=\frac{(.5)(.1)}{1 \times 10^{-6}}=50,000$
$\Delta \operatorname{Re}(\tilde{U}, \tilde{D}, \tilde{v})=\left|\frac{\partial \operatorname{Re}}{\partial U}\right| \Delta \tilde{U}+\left|\frac{\partial \operatorname{Re}}{\partial D}\right| \Delta \tilde{D}+\left|\frac{\partial \operatorname{Re}}{\partial v}\right| \Delta \tilde{v}$
$\Delta \operatorname{Re}(\tilde{U}, \tilde{D}, \tilde{v})=\left|\frac{D}{v}\right| \Delta \tilde{U}+\left|\frac{U}{v}\right| \Delta \tilde{D}+\left|\frac{-U D}{v^{2}}\right| \Delta \tilde{v}$
$\Delta \operatorname{Re}(\tilde{U}, \tilde{D}, \tilde{v})=\left|\frac{.1}{1 \times 10^{-6}}\right| \cdot 01+\left|\frac{.5}{1 \times 10^{-6}}\right| \cdot 001+\left|\frac{(.5)(.1)}{\left(1 \times 10^{-6}\right)^{2}}\right|\left(0.005 \times 10^{-6}\right)$
$\Delta \operatorname{Re}(\tilde{U}, \tilde{D}, \tilde{v})=1000+500+250$
$\mathrm{Re}=50,000 \pm 1750$
$\operatorname{Re}=50,000 \pm 3.5 \%$

Total Numerical Error

Total Error = Round-Off Error + Truncation Error

- Truncation Error: can be decreased by decreasing h or increasing the number of terms retained in the expansion
- R.O. Error: is increased by increasing the number of computations or do to effects such as subtractive cancellation, adding large and small numbers, smearing, etc (can be minimized with extended precision)
- Decreasing h leads to an increase in the total number of calculations \rightarrow increase in R.O. Error
- There is a point of diminishing returns with decreasing h
- Typically RO do not dominate since computers carry enough significant digits, but be careful!

Control of Numerical Error

avoid significance loss	$\begin{cases}1 . & \begin{array}{l}\text { Avoid Subtracting Nearly Equal Numbers (use } \\ \text { Extended Precision). }\end{array} \\ 2 . & \begin{array}{l}\text { When Adding or Subtracting numbers sort them \& } \\ \text { begin adding the smallest numbers first. }\end{array} \\ \text { 3. } & \begin{array}{l}\text { Estimate accuracy by checking against a known } \\ \text { solution ... or by substituting the result back into } \\ \text { the original Equation to see if it is satisfied. }\end{array} \\ \text { 4. } & \text { Try a different algorithm. }\end{cases}$

Other Sources of Error

1. Blunders

- Incorrect data entry
- Improper programming
- Departures from a prescribed procedure
\qquad
\qquad
\qquad
\qquad

Try a different algorithm
\qquad
\qquad
\qquad

Formulation Error

- Incorrect Mathematical model \qquad
- Not accounting for all important physical phenomena

3. Experimental Data Uncertainty \qquad

- Measured uncertainty
- Property data is imprecise
- Can be reduced through uncertainty analysis
\qquad
\qquad

