

LU Decomposition

- What is LU decomposition?
- Another Class of Elimination methods
- Why do we want to we want to use it?
- The time consuming elimination step need only be performed on [A] NOT $\{b\}$
- Situations where [A] doesn't change and $\{b\}$ does.
- Trusses with varying external loads
- Multiple spring/mass systems with varying masses

Note: Gauss Elimination can be expressed as an LU decomposition

LU Decomposition

- Trusses with varying loads

Overview of LU Decomposition

What is LU decomposition?

$$
\begin{array}{cc}
{[A] \rightarrow[L][U]} \\
\text { Lower Triangular Matrix } & \text { Upper Triangular Matrix } \\
{[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right] \quad[U]=\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]}
\end{array}
$$

\qquad
LU Decomposition - A little
mathematical Jugglery
Consider: $\quad[A]\{x\}=\{b\} \quad$ (1)
Rewrite (1) as: $\quad[A][x\}-\{b\}=0$ (2)
From our Gauss Elimination Method, we know that (1) can be written as
$\left.\qquad \begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \\ x_{13} \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right\}=\left\{\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right\}$ (3)
Rewrite (3) as: $[U][x\}-\{d\}=0$
(4)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LU Decomposition - A little mathematical Jugglery

Assume a Lower Tridiagonal Matrix Exists:

$$
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]
$$

If $[L]$ is assumed to have the following property:
$[L][(U]\{x\}-\{d\})=[A]\{x\}-\{b\}$
Then distributing $[L]$ gives
$[L] u]\{x\}-[L][d\}=[A] x\}\}-\{b\}$
[A] $\{b\}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LU Decomposition We now have the following three equations to use in a solution Strategy: $\begin{array}{ll} {[U]\{x\}-\{d\}=0} & \text { (i) } \\ {[L \\| U]=[A]} & \text { (ii) } \\ {[L]\{d\}=\{b\}} & \text { (iii) } \end{array}$ 1. LU decomposition - Factor [A] into [L] and [U] (lower \& Upper triangular Matrices) 2. Substitution a. Use (iii) to generate \{d\} by forward substitution b. Substitute $\{d\}$ into (i) and use backward substitution to solve for $\{x\}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LU Decomposition - Gauss Elimination
 Recall, that Gauss Elimination gave

\qquad

$$
[U]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & 0 & a_{33}^{\prime \prime}
\end{array}\right]
$$

[L] was also produced during the forward elimination procedure,
\qquad through our "factors". Consider

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right\}
$$

1. First elimination step, multiply (1) by $f_{2}=\frac{a_{21}}{a_{11}}$ and subtract the
result from (2) to Eliminate a_{21}
2. Next, Multiply (1) by $f_{31}=\frac{a_{31}}{a_{11}}$ and subtract the result from (3) to eliminate a_{31}
and subtract the result from $\left(3^{\prime}\right)$ to $\begin{aligned} & \text { Multiply (2') by } \\ & \text { eliminate } a_{32}^{\prime}\end{aligned} f_{32}=\frac{a_{32}^{\prime}}{a_{22}^{\prime}}$

LU Decomposition - Gauss Elimination

- Now Perform operations only on [A]

Do NOT operate on $\{b\}$

- Save $f_{i j}$ and operate on $\{b\}$ later
- Store $f_{i j}$ in the appropriate $a_{i j}$ locations, i.e.,

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
f_{21} & a_{22}^{\prime} & a_{23}^{\prime} \\
f_{31} & f_{32} & a_{33}^{\prime \prime}
\end{array}\right] \quad \begin{aligned}
& \text { Represents an efficient storage of } \\
& \text { [L] and [U] }
\end{aligned}
$$

Where,

$$
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
f_{21} & 1 & 0 \\
f_{31} & f_{32} & 1
\end{array}\right] \quad[U]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & 0 & a_{33}^{\prime}
\end{array}\right]
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LU Decomposition - Gauss Elimination
 Confirm: $[A] \rightarrow[L][U]$

$[L \|] U]=\left[\begin{array}{ccc}1 & 0 & 0 \\ f_{21} & 1 & 0 \\ f_{31} & f_{32} & 1\end{array}\right]\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{\prime} & a_{23}^{\prime} \\ 0 & 0 & a_{33}^{\prime \prime}\end{array}\right]=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

LU Decomposition - Gauss Elimination

$$
\begin{gathered}
{[L]\{d\}=\{b\}} \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right\}=\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right\}} \\
d_{1}=b_{1} \quad \text { for } i=1 \\
d_{i}=b_{i}-\sum_{j=1}^{i-1} l_{i j} d_{j} \quad \text { for } i=2,3, \ldots, n
\end{gathered}
$$

LU Decomposition - Gauss Elimination
2. Backward Substitution: $[U]\{x\}=\{d\}$
$\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]\left\{\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\}=\left\{\begin{array}{c}d_{1} \\ d_{2} \\ d_{3}\end{array}\right\}$
$x_{n}=d_{n} / a_{n n}$
$x_{i}=\frac{d_{i}-\sum_{j=i+1}^{n} u_{i x} x_{j}}{u_{i i}} \quad$ for $i=n-1, n-2, \ldots, 1$

Simple LU Decomposition Example
Solve the following system of algebraic equations using Gauss Elimination based LU decomposition

$$
\left[\begin{array}{ccc}
4 & 3 & 1 \\
3 & -1 & 5 \\
2 & 4 & 2
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
4 \\
1
\end{array}\right\}
$$

Do Little LU Decomposition

- Requires all diagonal terms to be non-zero, $a_{i i} \neq 0$
- Pivoting can be added
- Decompose $[A]$ using
(1) $\quad u_{i j}=a_{i j}-\sum_{k=1}^{i-1} l_{i k} u_{k j} \quad$ for $j=1,2,3, \ldots, n$
(2) $\quad l_{i j}=\frac{1}{u_{i i}}\left(a_{i j}-\sum_{k=1}^{j-1} l_{i k} u_{k j}\right) \quad$ for $j=1,2,3, \ldots, i-1$
- Computation begins by defining
- $u_{11}=a_{11}$
- $l_{i 1}=a_{i 1} / u_{11}$

$$
\text { for } i=2, \ldots, n
$$

- Next, for each $j=2, \ldots, n$ compute $u_{i j}$ and $l_{i j}$ using (1) and (2) for increasing i
- Now, each coefficient is known when it is needed.
$[U]$ and $[L]$ are thus found column by column.

Computational Effort

- Gauss Elimination
- Forward Elimination
- Backward Substitution
- LU Decomposition
- Forward Elimination
- Forward Substitution
- Backward Substitution
- Less Effort during forward decomposition
- Extra effort to do Forward Substitution
Both techniques require the same effort if only 1 set of $\{b\}$'s are use $\sim n^{3}$ Benefits from LU decomposition result if you have many \{b\}’s
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Computational Effort	
- Gauss Elimination	- LU Decomposition
- Forward Elimination	- Forward Elimination
- Backward	- Forward Substitution
Substitution	- Backward
	Substitution - Less Effort during forward decomposition - Extra effort to do Forward Substitution
Both techniques require the same effort if only 1 set of $\{b\} ’ s$ are use $\sim n^{3}$ Benefits from LU decomposition result if you have many $\{b\} ’ s$	

