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LU Decomposition

Ch. 10

LU Decomposition

• What is LU decomposition?
– Another Class of Elimination methods

• Why do we want to we want to use it?
– The time consuming elimination step need 

only be performed on [A] NOT {b}
– Situations where [A] doesn’t change and {b}

does.
• Trusses with varying external loads
• Multiple spring/mass systems with varying masses

Note: Gauss Elimination can be expressed as an LU decomposition

LU Decomposition
• Trusses with varying loads
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LU Decomposition
• Trusses with varying loads

θ1 θ3

θ2

[ ]{ } { }bxA = 

1F

External Forces (i.e., P)
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Reaction forces &
Internal forces (i.e., F’s and R’s)

P

Coefficients defined by 
the Geometry of the truss 
(ie., cosθ1)

We would like to calculate 
the F’s and R’s, need an 
efficient way to calculate 
matrix Inverse:

{ } [ ] { }bAx -1 =

Overview of LU Decomposition
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What is LU decomposition?

Lower Triangular Matrix Upper Triangular Matrix

LU Decomposition – A little 
mathematical Jugglery
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[ ]{ } { }bxA =

[ ]{ } { } 0=− bxA

[ ]{ } { } 0=− dxU

Consider: (1)

Rewrite (1) as: (2)

From our Gauss Elimination Method, we know that (1) can be written as

(3)

Rewrite (3) as: (4)
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LU Decomposition – A little 
mathematical Jugglery
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Assume a Lower Tridiagonal Matrix Exists:

If [L] is assumed to have the following property:

[ ][ ]{ } [ ]{ } [ ]{ } { }bxAdLxUL −=−

Then distributing [L] gives

[ ]A { }b

LU Decomposition 

[ ]{ } { }
[ ][ ] [ ]
[ ]{ } { }bdL

AUL
dxU

=
=

=− 0

We now have the following three equations to use in a solution Strategy:

1. LU decomposition
• Factor [A] into [L] and [U] (lower & Upper 

triangular Matrices)
2. Substitution

a. Use (iii) to generate {d} by forward 
substitution

b. Substitute {d} into (i) and use backward 
substitution to solve for {x}

(i)

(ii)

(iii)

LU Decomposition

[ ]{ } { }bxA =

[ ][ ]LU

[ ]{ } { }bdL =

[ ]{ } { }dxU =

{ }x

{ }d

Decomposition

Forward

Backward

Substitution
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LU Decomposition – Gauss Elimination
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Recall, that Gauss Elimination gave:

[L] was also produced during the forward elimination procedure, 
through our “factors”. Consider,

1. First elimination step, multiply (1) by and subtract the 
result from (2) to Eliminate a21

2. Next, Multiply (1) by and subtract the result from (3) to 
eliminate a31

3. Multiply (2’) by and subtract the result from (3’) to 
eliminate a’32

(1)

(2)

(3)
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LU Decomposition – Gauss Elimination
• Now Perform operations only on [A]
• Do NOT operate on {b}
• Save fij and operate on {b} later
• Store fij in the appropriate aij locations, i.e., 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

232221

131211

''
''

aff
aaf
aaa Represents an efficient storage of 

[L] and [U]

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
01
001

3231

21

ff
fL [ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2322

131211

''00
''0

a
aa
aaa

U

Where,

LU Decomposition – Gauss Elimination
Confirm:
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LU Decomposition – Gauss Elimination
Algorithm for Forward & Backward Substitution:
1. Forward Substitution, Solve for {d}
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LU Decomposition – Gauss Elimination
2. Backward Substitution:
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for i=n-1,n-2, …, 1

Just like in Naïve Gauss Elimination

Simple LU Decomposition Example
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Solve the following system of algebraic equations using Gauss Elimination 
based LU decomposition
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Do Little LU Decomposition 
• Requires all diagonal terms to be non-zero, 
• Pivoting can be added
• Decompose [A] using

• Computation begins by defining 
• u11 = a11
• lii =1
• li1 = ai1/u11 for  i= 2, …, n

• Next, for each j=2, …, n compute uij and lij using (1) and (2) for increasing i
• Now, each coefficient is known when it is needed.
• [U] and [L] are thus found column by column.
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Computational Effort

• Gauss Elimination
• Forward Elimination
• Backward 

Substitution

• LU Decomposition
• Forward Elimination
• Forward Substitution
• Backward 

Substitution
– Less Effort during 

forward decomposition
– Extra effort to do 

Forward Substitution
Both techniques require the same effort if only 1 set of {b}’s are use ~ n3

Benefits from LU decomposition result if you have many {b}’s


