
1

LU Decomposition

Ch. 10

LU Decomposition

• What is LU decomposition?
– Another Class of Elimination methods

• Why do we want to we want to use it?
– The time consuming elimination step need

only be performed on [A] NOT {b}
– Situations where [A] doesn’t change and {b}

does.
• Trusses with varying external loads
• Multiple spring/mass systems with varying masses

Note: Gauss Elimination can be expressed as an LU decomposition

LU Decomposition
• Trusses with varying loads

θ1 θ3

θ2

[]{ } { }bxA =

1F

External Forces (i.e., P)

3F

2F 2R1R
3R

Reaction forces &
Internal forces (i.e., F’s and R’s)

P

Coefficients defined by
the Geometry of the truss
(ie., cosθ1)

2

LU Decomposition
• Trusses with varying loads

θ1 θ3

θ2

[]{ } { }bxA =

1F

External Forces (i.e., P)

3F

2F 2R1R
3R

Reaction forces &
Internal forces (i.e., F’s and R’s)

P

Coefficients defined by
the Geometry of the truss
(ie., cosθ1)

We would like to calculate
the F’s and R’s, need an
efficient way to calculate
matrix Inverse:

{ } [] { }bAx -1 =

Overview of LU Decomposition

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2322

131211

00
0

u
uu
uuu

U[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
01
001

3231

21

ll
lL

[] [][]ULA →

What is LU decomposition?

Lower Triangular Matrix Upper Triangular Matrix

LU Decomposition – A little
mathematical Jugglery

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

33

2322

131211

00
0

d
d
d

x
x
x

u
uu
uuu

[]{ } { }bxA =

[]{ } { } 0=− bxA

[]{ } { } 0=− dxU

Consider: (1)

Rewrite (1) as: (2)

From our Gauss Elimination Method, we know that (1) can be written as

(3)

Rewrite (3) as: (4)

3

LU Decomposition – A little
mathematical Jugglery

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
01
001

3231

21

ll
lL

[] []{ } { }() []{ } { }bxAdxUL −=−

Assume a Lower Tridiagonal Matrix Exists:

If [L] is assumed to have the following property:

[][]{ } []{ } []{ } { }bxAdLxUL −=−

Then distributing [L] gives

[]A { }b

LU Decomposition

[]{ } { }
[][] []
[]{ } { }bdL

AUL
dxU

=
=

=− 0

We now have the following three equations to use in a solution Strategy:

1. LU decomposition
• Factor [A] into [L] and [U] (lower & Upper

triangular Matrices)
2. Substitution

a. Use (iii) to generate {d} by forward
substitution

b. Substitute {d} into (i) and use backward
substitution to solve for {x}

(i)

(ii)

(iii)

LU Decomposition

[]{ } { }bxA =

[][]LU

[]{ } { }bdL =

[]{ } { }dxU =

{ }x

{ }d

Decomposition

Forward

Backward

Substitution

4

LU Decomposition – Gauss Elimination

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2322

131211

''00
''0

a
aa
aaa

U

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

333231

232221

131211

b
b
b

x
x
x

aaa
aaa
aaa

11

21
21 a

af =

11

31
31 a

af =

Recall, that Gauss Elimination gave:

[L] was also produced during the forward elimination procedure,
through our “factors”. Consider,

1. First elimination step, multiply (1) by and subtract the
result from (2) to Eliminate a21

2. Next, Multiply (1) by and subtract the result from (3) to
eliminate a31

3. Multiply (2’) by and subtract the result from (3’) to
eliminate a’32

(1)

(2)

(3)

22

32
32 '

'
a
af =

LU Decomposition – Gauss Elimination
• Now Perform operations only on [A]
• Do NOT operate on {b}
• Save fij and operate on {b} later
• Store fij in the appropriate aij locations, i.e.,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

232221

131211

''
''

aff
aaf
aaa Represents an efficient storage of

[L] and [U]

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
01
001

3231

21

ff
fL []

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2322

131211

''00
''0

a
aa
aaa

U

Where,

LU Decomposition – Gauss Elimination
Confirm:

[][]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

33

2322

131211

3231

21

''00
''0

1
01
001

aaa
aaa
aaa

a
aa
aaa

ff
fUL

[] [][]ULA →

5

LU Decomposition – Gauss Elimination
Algorithm for Forward & Backward Substitution:
1. Forward Substitution, Solve for {d}

[]{ } { }bdL =

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

3231

21

1
01
001

b
b
b

d
d
d

ll
l

∑
−

=

−=
1

1

i

j
jijii dlbd for i=2,3, …, n

11 bd = for i=1

LU Decomposition – Gauss Elimination
2. Backward Substitution:

ii

n

ij
jiji

i u

xud
x

∑
+=

−
= 1

[]{ } { }dxU =

nnnn adx /=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

33

2322

131211

00
0

d
d
d

x
x
x

u
uu
uuu

for i=n-1,n-2, …, 1

Just like in Naïve Gauss Elimination

Simple LU Decomposition Example

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

1
4
0

242
513
134

3

2

1

x
x
x

Solve the following system of algebraic equations using Gauss Elimination
based LU decomposition

6

Do Little LU Decomposition
• Requires all diagonal terms to be non-zero,
• Pivoting can be added
• Decompose [A] using

• Computation begins by defining
• u11 = a11
• lii =1
• li1 = ai1/u11 for i= 2, …, n

• Next, for each j=2, …, n compute uij and lij using (1) and (2) for increasing i
• Now, each coefficient is known when it is needed.
• [U] and [L] are thus found column by column.

∑
−

=

−=
1

1

i

k
kjikijij ulau

0≠iia

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

−

=

1

1

1 j

k
kjikij

ii
ij ula

u
l

for j=1,2,3, …, n

for j=1,2,3, …, i-1

(1)

(2)

Computational Effort

• Gauss Elimination
• Forward Elimination
• Backward

Substitution

• LU Decomposition
• Forward Elimination
• Forward Substitution
• Backward

Substitution
– Less Effort during

forward decomposition
– Extra effort to do

Forward Substitution
Both techniques require the same effort if only 1 set of {b}’s are use ~ n3

Benefits from LU decomposition result if you have many {b}’s

