LU Decomposition

Ch. 10

LU Decomposition

- What is LU decomposition?
 - Another Class of Elimination methods
- Why do we want to we want to use it?
 - The time consuming elimination step need only be performed on [A] NOT [b]
 - Situations where [A] doesn't change and $\{b\}$ does.
 - Trusses with varying external loads
 - Multiple spring/mass systems with varying masses

Note: Gauss Elimination can be expressed as an LU decomposition

LU Decomposition

• Trusses with varying loads

LU Decomposition

• Trusses with varying loads

Overview of LU Decomposition

What is LU decomposition?

$$[A]\!\to\![L][U]$$

Lower Triangular Matrix

Upper Triangular Matrix

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix}$$

$$[U] = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

LU Decomposition – A little mathematical Jugglery

Rewrite (1) as: $[A]{x}-{b}=0$ (2)

From our Gauss Elimination Method, we know that (1) can be written as

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{cases} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$
 (3)

Rewrite (3) as: $[U]\{x\}-\{d\}=0$ (4)

LU Decomposition – A little mathematical Jugglery

Assume a Lower Tridiagonal Matrix Exists:

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix}$$

If [L] is assumed to have the following property:

$$[L]([U]\{x\}-\{d\})=[A]\{x\}-\{b\}$$

Then distributing [L] gives

$$\underbrace{[L][U]}_{[A]} \{x\} - \underbrace{[L]\{d\}}_{\{b\}} = [A]\{x\} - \{b\}$$

LU Decomposition

We now have the following three equations to use in a solution Strategy:

$$\begin{bmatrix} U \end{bmatrix} \{x\} - \{d\} = 0 \quad (i) \\ \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \quad (ii) \\ \begin{bmatrix} L \end{bmatrix} \{d\} = \{b\} \quad (iii)$$

- 1. LU decomposition
 - Factor [A] into [L] and [U] (lower & Upper triangular Matrices)
- 2. Substitution
 - a. Use (iii) to generate {d} by forward substitution
 - b. Substitute {d} into (i) and use backward substitution to solve for {x}

LU Decomposition

LU Decomposition – Gauss Elimination

Recall, that Gauss Elimination gave:

$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a''_{33} \end{bmatrix}$$

[L] was also produced during the forward elimination procedure, through our "factors". Consider,
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{cases} b_1 \\ b_2 \\ b_3 \end{bmatrix} (2)$$
(2)

- 1. First elimination step, multiply (1) by $f_2 = \frac{a_{21}}{a_{11}}$ and subtract the result from (2) to Eliminate a_{2l}
- 2. Next, Multiply (1) by $f_{3} = \frac{a_{31}}{a_{11}}$ and subtract the result from (3) to eliminate a_{31} 3. Multiply (2') by $f_{32} = \frac{a_{32}'}{a_{22}'}$ and subtract the result from (3') to eliminate a_{32}'

LU Decomposition - Gauss Elimination

- Now Perform operations only on [A]

- Do NOT operate on $\{b\}$ Save f_{ij} and operate on $\{b\}$ later Store f_{ij} in the appropriate a_{ij} locations, i.e.,

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ f_{21} & a'_{22} & a'_{23} \\ f_{31} & f_{32} & a''_{33} \end{bmatrix}$$

Represents an efficient storage of [L] and [U]

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ f_{21} & 1 & 0 \\ f_{31} & f_{32} & 1 \end{bmatrix}$$

$$[U] = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a''_{33} \end{bmatrix}$$

LU Decomposition - Gauss Elimination

 ${\rm Confirm:} \quad [A] {\rightarrow} [L][U]$

$$\begin{bmatrix} L \end{bmatrix} \begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ f_{21} & 1 & 0 \\ f_{31} & f_{32} & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a''_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

LU Decomposition – Gauss Elimination

Algorithm for Forward & Backward Substitution: 1. Forward Substitution, Solve for $\{d\}$

$$[L]{d} = {b}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$d_1 = b_1$$

$$for i=1$$

$$d_1 = b_1 \qquad \qquad for \ i=1$$

$$d_i = b_i - \sum_{j=1}^{i-1} l_{ij} d_j \qquad for \ i=2,3, \dots, n$$

LU Decomposition - Gauss Elimination

2. Backward Substitution:

$$[U]{x} = {d}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

$$x_n = d_n / a_{nn}$$

$$x_{i} = \frac{d_{i} - \sum_{j=i+1}^{n} u_{ij} x_{j}}{u_{ii}}$$
 for i=n-1,n-2, ...,

Just like in Naïve Gauss Elimination

Simple LU Decomposition Example

Solve the following system of algebraic equations using Gauss Elimination based LU decomposition

$$\begin{bmatrix} 4 & 3 & 1 \\ 3 & -1 & 5 \\ 2 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix}$$

Do Little LU Decomposition

- Requires all diagonal terms to be non-zero, $a_{ii} \neq 0$ Requires all diagonal te
 Pivoting can be added
 Decompose [A] using

se
$$[A]$$
 using
$$(1) \qquad u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \qquad \qquad for j$$

$$\begin{aligned} &\text{(1)} & u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} & \quad for \, j = 1, 2, 3, \dots, n \\ &\text{(2)} & l_{ij} = \frac{1}{u_{ii}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right) & \quad for \, j = 1, 2, 3, \dots, i-1 \end{aligned}$$

- · Computation begins by defining
 - $u_{II} = a_{II}$ $l_{ii} = I$ $l_{iI} = a_{iI}/u_{II}$

for
$$i=2, ..., n$$

- Next, for each j=2, ..., n compute u_{ij} and l_{ij} using (1) and (2) for increasing i
 Now, each coefficient is known when it is needed.
- Now, each coefficient is known when it is need.

 [U] and [L] are thus found column by column.

Computational Effort

- Gauss Elimination
- Forward Elimination
- Backward Substitution
- LU Decomposition
- Forward Elimination
- Forward Substitution
- Backward Substitution
 - Less Effort during forward decomposition
 - Extra effort to do Forward Substitution

Both techniques require the same effort if only 1 set of {b}'s are use $\sim n^3$ Benefits from LU decomposition result if you have many {b}'s