ME2450 - Numerical Methods
Differential Equation Classification:
There are much more rigorous mathematical definitions than those given below however, these examples should help you understand the concept of differential equation classifications.

Differential Equations - These are problems that require the determination of a function satisfying an equation containing one or more derivatives of the unknown function.

Ordinary Differential Equations - the unknown function in the equation only depends on one independent variable; as a result only ordinary derivatives appear in the equation.

Partial Differential Equations - the unknown function depends on more than one independent variable; as a result partial derivatives appear in the equation.

Order of Differential Equations - The order of a differential equation (partial or ordinary) is the highest derivative that appears in the equation.

Linearity of Differential Equations - A differential equation is linear if the dependant variable and all of its derivatives appear in a linear fashion (i.e., they are not multiplied together or squared for example or they are not part of transcendental functions such as sins, cosines, exponentials, etc.).

ODE Examples where y is the dependant variable and x is the independent variable:

1. $y^{\prime \prime}+y=0$
Linear
2. $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=\sin x \quad$ Linear
3. $y y^{\prime \prime}+y=0 \quad$ Non-linear
4. $\frac{d^{2} y}{d x^{2}}+\sin y=0$
Non-Linear
5. $x y^{\prime \prime}+y=0$
Linear

Equation 2 is non-linear because of the $y y^{\prime \prime}$ product. Equation 5 is non-linear because of the $\sin (y)$ term.

PDE Examples where u is the dependant variable and x, y and t are independent variables:
6. $\frac{\partial^{2} u}{\partial x^{2}}+\sin y=0 \quad$ Linear
7. $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+u^{2}=0 \quad$ Non-Linear
8. $u \frac{\partial^{2} u}{\partial x^{2}}+u=0 \quad$ Non-Linear
9. $\frac{\partial^{2} u}{\partial t^{2}}=e^{-t} \frac{\partial^{2} u}{\partial x^{2}}+\sin t \quad$ Linear

Equation 7 is nonlinear because of the u^{2} term. Equation 8 is non-linear because of the $u \frac{\partial^{2} u}{\partial x^{2}}$ term.

Homogeneity of Differential Equations - Given the general partial differential equation:

$$
A \frac{d^{2} u}{d x^{2}}+B \frac{d^{2} u}{d y^{2}}+C \frac{d u}{d x}+D \frac{d u}{d y}+E \frac{d u}{d y}+F u=G(x, y)
$$

where A, B, C, D and E are coefficients, if $G(x, y)=0$ the equation is said to be homogeneous.

ODE Examples where y is the dependant variable and x is the independent variable:

1. $y^{\prime \prime}+y=0 \quad$ homogeneous \quad 4. $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=x+e^{-x} \quad$ non-homogen
2. $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2}=0$ homogeneous
3. $y^{\prime \prime}+y^{\prime}+y=\sin (t)$ non-homogeneous

More examples:
Example 1: Equation governing the motion of a pendulum.
$\frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \sin \theta=0$
$\frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \theta=0$
Equations (1) \& (2) are both $2^{\text {nd }}$ order, homogeneous, ODEs. Equation (1) is non-linear because of the sine function while equation (2) is linear.
$3 x^{2} y^{\prime \prime}+2 \ln (x) y^{\prime}+e^{x} y=3 x \sin (x) \quad: 2^{\text {nd }}$ order, non-homogeneous, linear ODE
$y^{\prime \prime}+y^{\prime}+e^{y}=3 x \sin (x) \quad: 3^{\text {rd }}$ order, non-homogeneous, non-linear ODE
$\frac{\partial^{4} u}{\partial t^{4}}=e^{-t} \frac{\partial^{2} u}{\partial x^{2}}+\sin t \quad: 4^{\text {th }}$ order, non-homogeneous, linear PDE

