25.18 Solutions:
If you solved the problem using Runge-Kutta you should get:
The 4™-order RK method with h = 0.5 gives

X y ki Ym Kz Ym k3 Ye Kq

0 1 -1.1 0.725 -0.75219 0.811953 -0.8424 0.578799 -0.49198 -0.79686
0.5 0.60157 -0.51133 0.473737 -0.25463 0.537912 -0.28913 0.457006 -0.0457  -0.27409
1 0.464524 -0.04645 0.452911 0.209471 0.516892 0.239062 0.584055 0.671663 0.253713
15 0.59138 0.680087 0.761402 1.494252 0.964943 1.893701 1.538231 4.460869 1.986144
2 1.584452 4.594911 2.73318 10.83023 4.292008 17.00708 10.08799 51.95317 18.70378

If you solved the problem 25.1 using
Euler’s method with h = 0.5

X y dy/dx

0 1 -1.1
0.5 0.45 -0.3825

1 0.25875 -0.02588
15 0.245813  0.282684

2 0.387155  1.122749

27.2 Solutions: Re-express the second-order equation as a pair of ODES:
dT
R Z
dx

$=0.15T

dx

The solution was using the Heun method (without iteration) with a step-size of 0.01.

An initial condition of z = —120 was chosen for the first shot. The first few calculation

results are shown below.

X T z K11 Ko Tend Zend K21 K22 &

2

0 240.000 -120.000 -120.000 36.000 228.000 -116.400 -116.400 34.200 -118.200
0.1 228.180 -116.490 -116.490 34.227 216.531 -113.067 -113.067 32.480 -114.779
0.2 216.702 -113.155 -113.155 32.505 205.387 -109.904 -109.904 30.808 -111.529
0.3 205.549 -109.989 -109.989 30.832 194.550 -106.906 -106.906 29.183 -108.447
0.4 194.704 -106.988 -106.988 29.206 184.006 -104.068 -104.068 27.601 -105.528
0.5 184.152 -104.148 -104.148 27.623 173.737 -101.386 -101.386 26.061 -102.767

35.100
33.353
31.657
30.007
28.403
26.842

The resulting value at x = 10 was T(10) = -1671.817. A second shot using an initial
condition of z(0) = —60 was attempted with the result at x = 10 of T(10) = 2047.766.
These values can then be used to derive the correct initial condition,

2(0)=-120+ —00+120 (150 — (~1671.817)) = —90.6126

2047.766 — (—1671.817)




The resulting fit, along with the two *“shots” are displayed below:
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The final shot along with the analytical solution (displayed as filled circles) shows
close agreement:
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27.3 Solution
A centered finite difference can be substituted for the second derivative to give,

Ty — 2T +T
hZ

~0.15T, =0
orforh=1,

~T,; +2.15T, -T;,, =0
The first node would be
2.15T, - T, = 240

and the last node would be

~T, +2.15T,, =150

The tridiagonal system can be solved with the Thomas algorithm or Gauss-Seidel for
(the analytical solution is also included)



X T  Analytical
0 240 240
1 165.7573 165.3290
2 116.3782 115.7689
3 84.4558 83.7924
4 65.2018 64.5425
5
6
7
8
9

55.7281 55.0957
54.6136 54.0171
61.6911 61.1428
78.0223 77.5552
106.0569 105.7469

10 150 150

The following plot of the results (with the analytical shown as filled circles) indicates
close agreement.
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