Global Announcements

  • Spring MATERHORN-X Field campaign is a success!
  • NSF Summer Student Program University of Minnesota-Duluth
  • Scott Speckart successfully defended his PhD on Monday April 29, 2013.
  • BLLAST field experiment video is now available here.
  • Sustainability growing at the U with the GCSC


Sean Moran

Sean Moran

Hometown: Cheyenne, Wy

Undergraduate: Gonzaga University

Program: MS (Graduated May 2012)

Current Position: Engineer - TD Williamson

Research Interests: Environmental Fluid Dynamics (experimental and computational) with a focus on momentum transport, particle (PM10 and PM2.5) transport and deposition, atmospheric turbulence, turbulent mixing and deposition of scalars with variable atmospheric stability, wind tunnel and field testing of turbulence within vegetative canopies (porous medium), grid-generated isotropic turbulence, sonic anemometry, and hot-wire anemometry. Additional research interests include Particle Image Velocimetry (PIV), Computational Fluid Dynamics (CFD), and Large-Eddy Simulation (LES).

S.M. Moran, E.R. Pardyjak, J.M. Veranth, "The Role of Turbulence in Enhancing Deposition", (2012) Phys. Fluids, (publication under review)
S.M. Moran, E.R. Pardyjak, J.M. Veranth "Developing strategies for fugitive dust mitigation and transport flux using native vegetative windbreaks for dust control,” Paper #16, Air and Waste Management 104th Annual Conference and Exhibition, Orlando, FL, June 21, 2011.


Optimization of Urban Designs for Air Quality and Energy Efficiency

A real-time simulation of dispersion in an urban domain

E.R. Pardyjak (Mechanical Engineering)

P. Willemsen (University of Minnesota - Duluth)

Intellectual Merit
Over the past three decades, urban planners have attempted to make cities more sustainable by espousing higher density urban design concepts such as Compact Cities, Walkable Communities, and New Urbanist developments. It has been argued by some urban planners that the per capita energy use and air pollution emissions in densely built cities are less than in their more sprawling less dense counterparts. However, as urban density increases, the ability for pollutants to be transported out of the urban area is inhibited. This complex interaction between various types of urban form and their potential energy use and air quality is poorly understood. The critical need addressed by the proposal is to increase knowledge for how environment and urban form interact. Our hypothesis is that urban structures and layouts exist which can minimize energy use while also minimizing air pollution exposure. The purpose of this proposal is to investigate this complex interaction for various types of urban structures and to develop a design strategy for optimizing urban form under a variety of constraints. Our approach will be to develop an extremely fast and inexpensive energy use and dispersion modeling tool for urban areas that builds on our previous work. The modeling system will utilize the unique computational parallelism afforded by graphics processing units (GPUs, that are regularly utilized in the video game industry), to run many simulations in an effort to train an optimization algorithm for determining optimal designs for urban structures and their layout. We will also utilize an interactive and immersive virtual environment to provide unprecedented understanding and refinement of the complex physical processes associated with the energy balance and pollutant dispersion in an urban setting.
Broader Impacts
We expect that the modeling capabilities that will be developed through this work will aid urban planners in developing useful and novel planning strategies to improve the sustainability of modern cities. To help ensure this, we will work with urban planners throughout the model development process. We also believe that this work will aid architects by providing them with a tool that not only analyzes isolated buildings, but also provides understanding regarding the interaction of multiple buildings during the design process. In addition, this proposal has a substantial outreach component designed to provide a unique educational opportunity for American Indians, Alaskan Natives, and other minorities to learn about various aspects of modeling in environmental engineering. Through our program, American Indian students from Northern Minnesota will be invited to a weeklong interactive learning symposium during each of the three years of the grant.