Thermal Sciences Research and Education in the University of Utah’s Department of Mechanical Engineering studies thermodynamics and heat transfer physics in a wide range of length and time scales that impact engineering and biological applications. Core strengths include microfluidics, computational fluid dynamics, radiative energy transfer, and nanoscale.
Faculty and Labs
Todd Harman
Research interests include: Computational Fluid Dynamics and Fluid Structure Interaction, Supersonic flows, and Large scale simulations.
Tianlie Feng
Lab – Feng MEX Lab
Our research is to push the frontiers of thermal energy transport, conversion, and storage in complex systems to extremes. Specifically, we target materials properties for ultra-high temperatures (1000-3000 °C), ultra-low temperatures (-270 °C), ultra-high thermal conductivity (2000 W/mK), ultra-low thermal conductivity (<0.01 W/mK), ultra-high power density, and ultra-fast energy transfer rate, from the atomic level to human scale. Our research methods include both advanced simulations and experiments, aiming for both fundamental sciences and cutting-edge technologies.
Alex Novoselov
Lab – Numerical Turbulence, Energy, and Reactions Group
The Numerical Turbulence, Energy, and Reactions lab focuses on making an impact against climate change through the computational study of flow and energy. Currently, we specialize in using high-fidelity simulations to better understand turbulent reacting flows in practical devices. When our tools reach the limits of what they can simulate, we develop new, state-of-the-art models to overcome these restrictions and continue our studies.
Keunhan (Kay) Park
Lab – Utah Nanoscale Thermal Transport (NT2) Lab
Focuses on research and education of nanoscale energy transport and conversion processes. Our research interests include fundamental physics of thermal, electrical, and photonic energy interactions at nanoscales, nanostructure-based energy applications, nanoscale thermophysical instrumentations, and tip-based nanoimaging and spectroscopy.
Sameer Rao
Research Interests include: Multiscale heat & mass transfer, Energy conversion & storage, Water harvesting & purification, and Thermal management.
Samira Shiri
Lab – Shiri Lab: Interfacial & Transport Physics
Research interests are in the areas of High throughput experiments and data analysis, underlying physics of active matter, bioinspired materials and mechanisms, and Biophysics: forensic science.