Background and Objectives

Background

- 1/6 couples of reproductive age worldwide struggle with some form of infertility. Two common corrective procedures are Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF). Both of these procedures require a process where sperm is separated from semen.

- Current techniques require a multi-step process involving trained lab technicians, lab machines/hardware, and can take up to 1.5 hours to process.

- The Utah Microfluidics Lab has created a novel Microfluidic chip that can separate sperm from semen utilizing special microfluidic properties.

Objectives

- Our goal is to create an autonomous, all-in-one inclusive device that utilizes the microfluidic chip to perform all the functions done in the lab, and in a fraction of the time.

- With the success of this device, IUI and IVF would be cheaper, faster, and more available to doctors worldwide.

Design Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Time</td>
<td>< 20 minutes</td>
</tr>
<tr>
<td>Heating Temp for Incubation</td>
<td>37 °C</td>
</tr>
<tr>
<td>No Cross Contamination</td>
<td>Non invasive, and disposable parts</td>
</tr>
<tr>
<td>Compact Housing</td>
<td>"Printer Sized" ~ 12x12x6 inches</td>
</tr>
<tr>
<td>Autonomous</td>
<td>Plug in sample -> retrieve finished sample</td>
</tr>
<tr>
<td>Process Control</td>
<td>Adjustable flow, additives, and # of iterations</td>
</tr>
</tbody>
</table>

Pump Design

- Over Several pump designs, we provided much smoother flow, which is necessary for the microfluidic chip to be effective.
- For size and cost requirements, we built our own syringe pumps.

Pump Features

- Custom 3D printed base and slider
- 12V Stepper motor
- Accommodates 3ml syringe

Pump Results

- Pumps can achieve smooth flow between .4ml/min and 7+ ml/min

The two pictures above show exit flow in the microfluidic chip. This proved that our custom built syringe pumps could achieve a flow steady enough to separate sperm in the spiral filter, accomplishing a major project milestone.

Heating Design

- The heating needed for incubation is achieved through heating coils of wire around the perimeter of the housing.
- A simple control system regulates power to the coils, and sustains a 37 °C climate.

Results

- 14 min. to preheat from 23° C to 37° C
- Initial overshoot ~2° then ~1° lasting 8-10 min.
- Undershoot <1° lasting 3 min.

Flow Program

- At the core of this device lies the design of how to sequence the pumping to resolve the many flow directions of the semen throughout the filtering process.

Final Device Outcome

- Process time – <15 minutes
- Incubation temp – 37° C
- Disposable parts/no cross contamination – Complete
- Process Control – Complete
- Compact all inclusive Housing - Complete

Future Work

- Live sample testing
- Process control tuning
- Quick releases cartridge for disposables

Special Thanks & Acknowledgments

Dr. Bruce Gale – Advisor | Alex Jafek – Ph.D. Candidate and Mentor
Utah Center of excellence for Biomedical Microfluidics