We would like to acknowledge the many colleagues whose course materials were borrowed and adapted in putting together this course, namely: Drs. Allison Okamura (JHU), Katherine Kuchenbecker (U Penn), Francois Conti, Federico Barbagli, and Kenneth Salisbury (Stanford), Ed Colgate (Northwestern), Hong Tan (Purdue), Blake Hannaford and Ganesh Sankaranarayanan (U. Washington), and Karon MacLean (UBC).
Today’s Class

- Haptics: definition
- Course overview and mechanics
- Introduction to Haptics
 - Haptics overview
 - History
 - High-level taxonomy of haptic devices
 - Applications/Motivations
 - Current challenges
- Readings
hap·tic ('hap-tik)

adj.
Of or relating to the sense of touch; tactile.
[Greek haptikos, from haptesthai, to grasp, touch. (1890)]

Cutaneous
• Temperature
• Texture
• Slip
• Vibration
• Force
• Pain

Kinesthesia
• Location/configuration
• Motion
• Force
• Compliance
Objectives of this course

- Gain broad perspective of haptics
 - Haptic perception
 - Psychophysics
 - Design and control of haptic interfaces
 - Stability
 - Haptic Rendering
 - Teleoperation

- Hands-on experience with haptics
 - Homework/Labs and Project

- Gain some familiarity with current research and literature

- Identify opportunities for research in haptics
Acknowledgments

Allison M. Okamura, JHU

J. Edward Colgate, Northwestern

Blake Hannaford, UW

Ganesh Sankaranarayanan, UW

Katherine Kuchenbecker, U. Penn

Ken Salisbury, Stanford

Federico Barbagli, Stanford and Hansen Medical

Francois Conti, Stanford

© K. Kuchenbecker + W. Provancher 2008
Administrative Details

- Class time is T Th 10:45-12:05 pm
- Dr. Provancher’s office hours:
 - TBA @ 2136 MEB or 2172 MEB (lab)
- Dr. Abbot’s office hours
 - TBA @ Ken138 or 2172 MEB (lab)?
- Class Location: 3174 MEB
- Lab Location: 2172 MEB
- Readings: To be posted on class website
- Course Website: http://mech.utah.edu/haptics
Course Website: http://mech.utah.edu/haptics

- Readings password protected (to avoid the wrath of publishers)
Grading

- 15% Class participation/contribution
 - Ask questions!
 - Offer opinions, insights, during class and paper discussions
- 35% Homework/Labs
 - 7-10 assignments
- 35% Project
 - 33% of this for the final wiki report
- 15% Project presentations and Demo
 - Each student team gives a 15 minute presentation of their project
Course Structure

- 1st Half
 - Lectures, readings, homework/labs

- 2nd Half
 - Readings/discussions, project
 - Project presentations, demo and wiki report
Content of the Course

- Human haptic sensing, neurophysiology and psychophysics
- Stability analysis
- Fundamentals of teleoperation and control
- Device design - haptic devices and tactile devices
- Issues in device design for humans
- Haptic rendering
- Improvements in haptics
- Modeling humans (limbs and system ID)
- Event-based haptics
Who am I?

- Mechanical Engineering
 - Adjunct appointment in Computer Science
- 4 primary research topics
 - Design of hand-mounted tactile displays
 - Tactile perception
 - Embedded manufacturing (embedded sensing and actuation in multi-material structures)
 - Climbing Robots
- Haptics and Embedded Mechatronics Lab
Who are you?

- Grads/Undergrads
- ME, CS, BME, ECE, ?
- Research interests
- Take and review ungraded background quiz
 - Hand in at end of class
Getting the most out of class

Learning Method % Retention
• What one reads 10%
• What one hears 26%
• What one sees 30%
• What one sees and hears 50%
• What one speaks 70%

Origins of Haptics
Mechanical Teleoperation

• Ray Goertz, Argonne National Lab, 1940s
Modern Teleoperation

JASON, e.g. Sayers (1999)

© K. Kuchenbecker 2008
Haptic Interaction with Virtual Objects

Information and power flows

Courtesy Mandayam Srinivasan, MIT

© Barbagli, Conti, Salisbury 2008
Some terminology

- “Haptic” refers to the perceptual system that draws information from the skin and kinesthesia.
- “Proprioception” is the unconscious perception of movement and spatial orientation arising from stimuli within the body itself.
- “Kinesthesia” is the sense that detects bodily position, weight, or movement of the muscles, tendons, and joints.
- “Tactual Stereognosis” is the perception of the form of an object by means of touch.
Types of Haptic Sensing

Kinesthetic / Proprioceptive
Stems from body movement

Cutaneous / Tactile
Stems from skin contact

Illustration by A. M. Okamura.
© K. Kuchenbecker 2008 + W. Provancher 2009
Haptic Interfaces

Kinesthetic (Force Feedback) Displays
Devices that provide forces or motions

Hybrid Haptic Displays
Attempt to combine kinesthetic and tactile feedback

Tactile Displays
Devices that stimulate skin to create touch sensation

© K. Kuchenbecker + W. Provancher, 2008
Kinesthetic Displays

Devices that provide forces or motions

- Device Taxonomy
 - Grounded devices
 - Body-based devices
 - Inertial reaction devices

- Transmission Types
 - Impedance (Low inertia, backdriveable)
 - Admittance (non-backdriveable)
Grounded kinesthetic devices
Impedance Type

MPB Freedom6S

SensAble Phantom Premiums

SensAble Omni

Magnetic Joystick, Hollis

Novint Falcon

Exoskeleton, Rosen
Quick Falcon Demo

Grounded kinesthetic device – Impedance Type

© Colgate, Kuchenbecker, Provancher 2008/2009
Grounded kinesthetic devices
Admittance Type

Cobot Hand Controller
[Faulring/Colgate]
http://lims.mech.northwestern.edu/projects/handcontroller

Haptic Master
(Moog Inc.)

© J. Edward Colgate 2006
Body-based devices

- Cybergrasp
- Rutgers Hand Master
- Arm Exoskeleton
Inertial Reaction Devices

- Game controllers
Tactile Displays

- Devices that stimulate skin to create touch sensation

- Device Taxonomy
 - Pin Arrays
 - Arrays of vertically moving pins
 - Arrays will laterally moving pins (Hayward and others)
 - Slip Display (Colgate, Caldwell, and others)
 - Shear Display
 - Variable friction display (Colgate and others)
 - Shear motion (Provancher and others)
 - Contact Location Display (Provancher)

- Other Technologies
 - Vibrotactile: Pager motors and voice coils
 - Pneumatic
 - Electrotactile
 - Suction
 - Ultrasonic Pressure
 - Etc…
Pin Arrays
with vertically moving pins

Burdea & Coiffet (1994)

Virtual finger
 Virtual edge

Tactile feedback array

3 2 1

3 2 1

Kaczmarek, et al. (1995)

Kontarinis, et al. (1995)

Wagner, et al. (2002)
Pin Arrays
with laterally moving pins

Havward, et al. (2003-7)

Wang, et al. (2006)

Figure 4: Mechanical design of the tactile Shear Force Display
Fritschi, et al. (2006)

© K. Kuchenbecker 2008 + W. Provancher 2009
Slip Displays

Hole in outer handle to contact inner rotating mandrel

Salada, et al. (2002-5)

Northwestern Haptic Knob.
Salada, Lipsey, Colgate (early 2000’s)
http://lims.mech.northwestern.edu/projects/rotaryknob/

Combined tactile and kinesthetic display
Variable Friction Shear Display

TPaD: Tactile Pattern Display.

01 Vibration mode of bending element

Winfield & Colgate (2007)
http://lims.mech.northwestern.edu/projects/TPaD/index.htm

© K. Kuchenbecker 2008 + W. Provancher 2009
Shear Motion Display

- Fingertip Shear Feedback & Skin Stretch for Haptic (Directional) Guidance
- Currently miniaturizing

Directional Shear Cues

Gleeson, Horschel, Provancher (2009)
Contact Display Prototype
combined tactile and kinesthetic display

2-D Contact Display Concept

1-D Contact Display Concept

Provancher et. al (2005)
Pneumatic and vibrotactile feedback

Sato, et al. (1991)

Burdea (1996)

Immersion CyberTouch Glove

Stone (1992)

Add Moy & Fearing, and Cahn & Fearing

© K. Kuchenbecker 2008
Tactile Device Challenges

- Stimulation density needs to be high
- Multimodal sensations are hard to overlay
- High complexity and weight diminishes portability, practicality
- Passive touch does not feel real

- Tactile device design is difficult!
Haptics has many applications

- Blind Persons
 - Programmable Braille
 - Access to GUIs
- Training
 - Medical Procedures
 - Astronauts
- Education
- Computer-Aided Design
 - Assembly-Disassembly
 - Human Factors
- Entertainment
 - Arcade (steering wheels)
 - Home (game controllers)
- Automotive
 - BMW “iDrive”
 - Haptic Touchscreens
- Mobile Phones
 - Immersion “Vibetonz”
- Animation/Modeling
- Art
- Material Handling
 - Virtual Surfaces

© J. Edward Colgate 2006
Training

- Visual display alone is not sufficient for certain types of virtual environments. To learn physical skills, such as using complicated hand tools, haptic information is a requirement.
Virtual Prototyping

McNeeley et al. (Boeing Corp.)

© J. Edward Colgate 2006
Rehabilitation

Applications

© J. Edward Colgate 2006
Teleoperation

Applications
Telemedicine

- Future application for tactile sensing/display
 - Telemedicine/Telesurgery

www.intuitivesurgical.com
Computer interface for blind users

- Text-based computers can easily be enhanced to include a speech synthesizer
- Graphical user interfaces are inherently visual
- A haptic display can help a blind computer user interact with graphics-based operating systems
Entertainment

Microsoft Sidewinder Steering Wheel

Applications

Logitech Wingman Joystick

© Colgate, Kuchenbecker, Provancher 2006-2009
Underlying motivations for haptics

- Looking across applications, we find common motivations:
 - *Haptics is required to solve the problem*
 - Interfaces for the blind
 - Phlebotomy training (task is mainly “feel”)
 - Vibetonz – a private communication channel
 - Improve communication (e.g., provide direction cue)
 - *Haptics improves realism and sense of immersion*
 - Entertainment
 - Animation/modeling
 - Diagnosis (e.g., Medical)
 - *Haptics provides constraint*
 - Assembly/disassembly
 - Virtual surfaces
How to design effective haptic interfaces

A simple three-step program...

A. Understand how the human sensory and perceptual systems work
B. Use this information to develop performance metrics
C. Understand how to build/control machines that display haptic percepts and meet performance metrics
Some current challenges in haptics

- Low power, embedded (miniaturize) haptics
 - Mobile electronics
- Exploiting tactual stereognosis (e.g., for automobile instrument panels)
 - Exoskeletal devices haven’t been the answer
- Haptics over the internet (e.g., for telesurgery)
 - Latencies are a big issue
- Haptic feedback for amputees
Haptics for prosthetics

- “Sensory reinnervation” provides a possible means for restoring the sense of touch to amputees

Kinesthetic and tactile sensors
Reading for next time

- Overview of reception and perception (neurophysiology and psychophysics)

 - Read first 7 ½ pages and skim the rest