Today’s Class

- Tactile Feedback Devices

Readings: No readings
- Work on HW
- Work on getting together with your project partner and writing a couple of paragraphs for 1 or 2 proposed projects

Tactile Feedback (also known as Tactile Display)

- Distinguish between haptic and tactile feedback
 - Tactile = Cutaneous = Skin Sensation
 - Haptic = Kinesthetic + Some Skin Sensation
 = Kinesthetic + Tactile

- Tactile Display (has two meanings)
 - An action (e.g., that type of stimulus can be tactilely displayed using a pin array)
 - A physical device (e.g., please attach your tactile display to that kinesthetic display)

Tactile Feedback (also known as Tactile Display)

- Tactile Displays excite a variety of mechanoreceptors
- Most common Display types
 - Vibrotactile
 - Pin arrays
 - Vertical
 - Lateral
Vibrotactile + Force Feedback

- Sensory substitution – vibrotactile feedback to replace force feedback

![Diagram of vibrotactile feedback system](image)

Vibrotactile Feedback

- RC servo driven

Pin Arrays

- FM Condition (increased range of sensation)

![Diagram of pin arrays](image)

[Kontarinis & Howe 1995]© W. Provancher 2009

[Kontarinis & Howe 1995]© W. Provancher 2009

Pin Arrays
- RC servo driven

Tactile Feedback in Telemanipulation

[Wagner, et al. 2002]

Pin Arrays

- Electromagnetic Rocker Arm Mechanism

![Diagram of Electromagnetic Rocker Arm Mechanism](image)

[Kammermeier, et al. 2000]

Pin Arrays

(Stimulate primarily SA, type II receptors)

- Linear DC Motors
 - Remote actuator box
 - Pull wires

![Remote actuator box with pull wires](image)

Johns Hopkins Somaticsensory Lab: Dianne Pawluk

[Pawluk, et al. 1998]

Pin Arrays

(Stimulate primarily SA, type II receptors)

- Shape Memory Alloy (SMA) coil springs
 - 8x8 pin array
 - 0.5 N force
 - 3.5 mm pin stroke
 - 0.1 mm stroke accuracy

Advantages
- Moderately compact
- High pin density

Disadvantages
- High power consumption
- Low pin force

[Shape Memory Alloy (SMA) coil springs example](image)

[Fisher 1996]
Pin Arrays
(Stimulate primarily SA, type II receptors)

- Shape Memory Alloy (SMA) coil springs
 - Compact Braille Display

Pin Arrays
- Shape Memory Alloy (SMA)
 - Cantilever beam and SMA pullwire design

Telemanipulation with Capacitive Pressure Array and SMA Pin Array

Applications for telesurgery
- Capacitive Pressure Sensor
- SMA Pin Array

Harvard Biorobotics Lab

(Pawluk ‘97)

Pin Arrays

- **Pneumatic**

 Advantages
 - Simple mechanical design
 - Relatively Low B/W Low B/W

 Disadvantages
 - Requires air pressure source
 - Bulky (routing air lines)
 - Poor control over pin height

 [Cohn, et al. 1992]

- **Piezoelectric**

 Advantages
 - High B/W
 - High pin density
 - Relatively compact design

 Disadvantages
 - Fragile
 - High voltage source for actuators
 - Small pin stroke length?

 [Summers & Chanter 2002]

Pin Arrays on Consumer Products

- **Piezoelectric**

 Advantages
 - High B/W
 - High pin density
 - Relatively compact design

 Disadvantages
 - Fragile
 - High voltage source for actuators
 - Small pin stroke length?

 [Summers & Chanter 2002]
Pin Arrays
- MEMS electrostatic pin array

Advantages
- High pin density
- Potential for mass production via MEMS/VLSI processing

Disadvantages
- Low stroke length of pins
- Low force level

[Fedder & Lopez referenced in Siegel 2002]

Vacuum/Suction Pin Array
- Palm and finger scale suction arrays
 - Feels similar to little electrical shocks

Advantages
- Simple mechanical design
- Can not display profile shapes

Disadvantages
- Requires a pump for vacuum
- Currently has low “pin” density
- Bulky (routing air lines) [Shinoda 2004]

Electrorheological Tactile Display
- For sensing finger forces

Figure 1: Cross-section of ER sensor and tacter [Voyles, et al. 1996]
Tactile feedback via magnet array

- Magnets glued to skin

More vibrotactile than pressure sensation

[Asamura, et al., 1998]

(http://www.alab.t.u-tokyo.ac.jp/%7Eshinolab/research/asamura/TF_Display2.html)

© W. Provancher 2009

Lateral Skin Shear

- Skin shear via piezoelectric actuation

[Breslav, et al. (2002)]

© W. Provancher 2009

Pin Arrays with laterally moving pins, cont.

-Hayward, et al. (2003-7)

Fritschi, et al. (2006)

"STReSS2" [Wang, et al. (2006)]

© K. Kuchenbecker 2008 + W. Provancher 2009

Lateral Skin Shear, Virtual Braille Dots

- Mechanical design of the tactile Shear Force Display

Fritschi, et al. (2006)

© W. Provancher 2009
Lateral Skin Shear, Virtual Braille Dots

Display of Virtual Braille Dots by Lateral Skin Deformation: A Pilot Study
J. Pasquero M. Legault V. Lévesque V. Hayward

© W. Provancher 2009

Pin Arrays

- Other types
 - Solenoids [Fischer 1995]
 - Ultrasonic
 - MR
 - ...

Tangent Plane Display

Simulating curvature via tangent plane

κ = 1/γ

[Dostmohamed & Hayward 2004]
Slip Displays

Variable Friction Shear Display

Shear Motion Display

Contact Display Prototype
Current Hot Areas of Interest of Haptics and Tactile Display

- Displaying skin shear / skin stretch
- Multi-finger manipulation
- Simple tactile display for consumer electronics (PDAs, Cell Phones…)
 - Primarily vibrotactile

Current Challenges of Haptics and Tactile Display

- Fusion of multiple display types (e.g., tactile pin array and shear)
- Miniaturization